Document Type

Article

Publication Date

12-29-2015

Publication Source

Plant Physiology and Biochemistry

Volume

100

Inclusive pages

12-17

DOI

10.1016/j.plaphy.2015.12.014

Abstract

As part of an evolution-function analysis, two nucleobase cation symporter 1 (NCS1) from the moss Physcomitrella patens (PpNCS1A and PpNCS1B) are examined e the first such analysis of nucleobase transporters from early land plants. The solute specificity profiles for the moss NCS1 were determined through heterologous expression, growth and radiolabeled uptake experiments in NCS1-deficient Saccharomyces cerevisiae. Both PpNCS1A and 1B, share the same profiles as high affinity transporters of adenine and transport uracil, guanine, 8-azaguanine, 8-azaadenine, cytosine, 5-fluorocytosine, hypoxanthine, and xanthine. Despite sharing the same solute specificity profile, PpNCS1A and PpNCS1B move nucleobase compounds with different efficiencies. The broad nucleobase transport profile of PpNCS1A and 1B differs from the recently-characterized Viridiplantae NCS1 in breadth, revealing a flexibility in solute interactions with NCS1 across plant evolution.

Keywords

Physcomitrella patens, Nucleobase cation symporter 1, Transport, Purine and pyrimidine

Disciplines

Biology

Included in

Biology Commons

Share

COinS