Title

Prey Chemical Discrimination by a Diploglossine Lizard, the Giant Hispaniolan Galliwasp (Celestus warreni)

Document Type

Article

Publication Date

2009

Publication Source

Amphibia-Reptilia

Volume

30

Issue

1

Inclusive pages

135-140

ISBN/ISSN

01735373

Peer Reviewed

yes

Abstract

Prey chemical discrimination, the ability to respond differentially to prey chemicals and control stimuli, enables many squamate reptiles to locate and identify prey using chemical cues sampled by tongue-flicking and analyzed by vomerolfaction. Among lizards this ability is limited to species that are active foragers having insectivorous/carnivorous diets and to omnivores and herbivores, even those derived from ancestral ambush foragers. We experimentally studied responses by hatchlings of giant Hispaniolan galliwasps, Celestus warreni, which appear to have a strict animal diet and are putatively active foragers, to prey chemicals and control substances. More individuals tongue-flicked in the cricket condition than the water condition. Response strength indicated by the tongue-flick attack score, a composite index of response strength based on number of tongue-flicks, biting (one lizard) and latency to bite, was greater in response to cricket stimuli than plant (lettuce) stimuli, cologne or distilled water. Thus, the galliwasps exhibited prey chemical discrimination. Celestus warreni, the first representative of Diploglossinae to be tested, exhibits chemosensory behavior similar to that of other anguids. Although no quantitative data on foraging mode are available, another diploglossine, Diploglossus vittatus, is an active forager. The limitation of prey chemical discrimination to active foragers among lizards with animal diets lend further support to the likelihood that C. warreni is an active forager. The galliwasps did not exhibit plant chemical discrimination.

Disciplines

Medical Sciences