A Comparison of Stress Responses in Sea Urchins and Sea Cucumbers Exposed to Salinity and Handling Stress

Regina Shannon
Indiana University - Purdue University Fort Wayne

Destin Furnas
Indiana University - Purdue University Fort Wayne

Ahmed Mustafa
Indiana University - Purdue University Fort Wayne, mustafa@ipfw.edu

Follow this and additional works at: http://opus.ipfw.edu/stu_pres

Part of the Biology Commons

Opus Citation
http://opus.ipfw.edu/stu_pres/4

This Presentation is brought to you for free and open access by the Publications and Presentations at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in Student Presentations by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
A COMPARISON OF STRESS RESPONSES IN SEA URCHINS AND SEA CUCUMBERS EXPOSED TO SALINITY AND HANDLING STRESS

REGINA SHANNON*, DESTIN FURNAS, AND AHMED MUSTAFA
INDIANA UNIVERSITY-PURDUE UNIVERSITY FORT WAYNE
Introduction

- Sea urchins are echinoderms that are generating interest in aquaculture
- Sea urchins are particularly valuable as:
 - Research models
 - Delicacy food item
- Many sea urchin populations have been greatly overfished
 - Depletion of European and Asian stocks has reduced sea urchin quality

Bertocci et al. 2014; Botsford et al. 2004
Introduction

• Animals can be raised in aquaculture conditions
 ○ Prevents:
 ▪ Overfishing
 ▪ Pollutant contamination
 ▪ Loss to predation
 ▪ Low quality product
 ▪ Damage to ecosystem

• However, organisms encounter stress in intensive aquaculture environments
 ▪ Some species are hardier than others
 ▪ Hardy species make better aquaculture candidates
 ○ More resistant to disease
 ○ Better production
 ○ Easier to raise

Kiew & Don 2012
Research Objectives

- To compare the stress responses of echinoderms in conditions that might be encountered in an aquaculture environment.
 - Handling
 - Animals are moved from tank to tank
 - In research facilities, they must be handled for sampling
 - Salinity change
 - Rain water can dilute salinity of culture ponds
 - Purchasing ocean mimicking salt mixes is expensive

Photo by Navid Ayon
Materials and Methods

- Adult purple sea urchins (*Stronglyocentrotus purpuratus*) and giant California sea cucumbers (*Parastichopus californicus*) were obtained from Bodega Marine Laboratory Station in Bodega Bay, California.
- Three treatment groups were established
 - Handling
 - Three times daily for 5 minutes; kept at optimal salinity (34 ppt)
 - Low salinity
 - Kept at 28 ppt
 - Controls
 - Optimal salinity (34 ppt) and never handled
- After 72 hours in treatment conditions, coelomic fluid was collected for analyses of cells (coelomocytes)
Materials and Methods

- Coelomocytes were counted via hemocytometer for differential and total coelomocyte count (Braak, 2002)
- Total protein content was read via protein refractometer (Mustafa et. al. 2000)
- Lytic activity was determined by lysozyme turbidity assay (Chia & Xing, 1996)
Material and Methods

- Phagocytic capacity of cells was determined by counting cells with engulfed bacteria (formalin-killed) bacteria (Mustafa et. al. 2000)
- Respiratory burst activity was determined by spectrophotometer

\[
\text{Phagocytic capacity} = \frac{\text{Number of cells with engulfed bacteria}}{\text{Total number of cells}} \times 100
\]

(Mustafa et. al. 2000)
Coelomocyte Studies

- Changes in coelomocytes
 - Total and differential sea urchin cell count
 - Phagocytic
 - White spherule
 - Red spherule
 - Vibratile
 - Coelomic fluid protein
 - Phagocytic capacity
 - Lytic activity

(Smith et. al. 2010)
Types of Sea Urchin Cells

- A—White spherule cell
- B—Vibratile cell
- C—Phagocytic cell
- D—Red spherule cell

Photo by Regina Shannon

Sea urchin cell types
Types of Sea Cucumber Cells

A—Lymphocyte
B—Type 1 and Type 2 spherule cell
C—Phagocytic cell
Results: Total Coelomocyte Count

Total Coelomocyte Count

Sea Urchin

<table>
<thead>
<tr>
<th>Experimental groups</th>
<th>Total Number of Coelomocytes (x10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
</tr>
</tbody>
</table>

Group 1 = Control
Group 2 = Low Salinity
Group 3 = Handling

Sea Cucumber

<table>
<thead>
<tr>
<th>Experimental groups</th>
<th>Total Number of Coelomocytes (x10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Group 1 = Control
Group 2 = Low Salinity
Group 3 = Handling
Results: Differential Cell Counts

Number of Phagocytic Cells

Sea Urchin

Experimental groups

<table>
<thead>
<tr>
<th>Group</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Low Salinity</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Handling</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Sea Cucumber

Experimental groups

<table>
<thead>
<tr>
<th>Group</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Low Salinity</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Handling</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>
Results: Coelomic Fluid Protein

Sea Urchin

Sea Cucumber

Group 1 = Control
Group 2 = Low Salinity
Group 3 = Handling
Results: Phagocytic Capacity

Phagocytic Capacity of Phagocytic Cells

Sea Urchin

Sea Cucumber

Group 1 = Control
Group 2 = Low Salinity
Group 3 = Handling
Results: Lytic Activity

Lytic Activity of Coelomic Fluid

Sea Urchin

Sea Cucumber

Experimental groups

1 2 3

Lytic Activity of Coelomic Fluid (Difference in absorbance)

0.00 0.01 0.02 0.03 0.04 0.05

Group 1 = Control
Group 2 = Low Salinity
Group 3 = Handling

Experimental groups

1 2 3

Coelomocyte Lytic Activity (Difference in absorbance)

0.00 0.01 0.02 0.03 0.04 0.05

Group 1 = Control
Group 2 = Low Salinity
Group 3 = Handling
Results: Respiratory Burst Activity

Sea Cucumber Respiratory Burst Activity

- Control
- Salinity
- Handling

Graph showing Absorbance (OD 600) against Cell Number x 10^5.
Results: Respiratory Burst Activity

Sea Urchin Respiratory Burst Activity

- **Control**
- **Salinity**
- **Handling**
Conclusion

- It appears that both handling and low salinity produce significant stress responses in sea urchins, though not significant stress in sea cucumbers.
- This would indicate that sea cucumbers are a hardier aquaculture candidate than sea urchins.

Photo by Stephen Shannon
Impact

- Our study of the physiological and immunological parameters in invertebrate aquaculture can be used for increased production and to make better pharmaceuticals in the future.
- An increase in culturing these species will help reduce the risk of overfishing.
- Intensive aquaculture will prevent problems associated with off-show culturing.
Further Research

- Areas for further research include:
 - Effects of varying salinities on animal health
 - Longer term study
 - Studies utilizing the impact of nutraceuticals on animal immune function

Photo by Tazin Fahmi
Acknowledgments

Thanks to Heidi Nissely, Grayson Ostemayer, Kalyssa Bontrager, Shreya Patel, Jesse Rinard, Adrein Paul, Carla Barrett and Karl Menard of Bodega Marine Laboratory.
Questions?