An Efficient Algorithm for Mining Maximal Co-located Event Sets

Mark Bow
Indiana University - Purdue University Fort Wayne

Jin Soung Yoo
Indiana University - Purdue University Fort Wayne, yooj@ipfw.edu

Follow this and additional works at: http://opus.ipfw.edu/stu_symp2010

Part of the [Computer Sciences Commons](http://opus.ipfw.edu/stu_symp2010)

Recommended Citation

This Presentation is brought to you for free and open access by the IPFW Student Research and Creative Endeavor Symposium at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in 2010 IPFW Student Research and Creative Endeavor Symposium by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
A spatial co-located event sets is a set of spatial events being frequently observed together in nearby geographic space. Spatial co-location patterns can give useful information in many application domains such as business, ecology, public health and criminology. For example, mobile service provider might be interested in co-located event patterns to provide location-sensitive advertisements and recommendations. A common framework for mining spatial co-location patterns employs a level-wised search method (like Apriori) to discover co-located event sets. The Apriori-based algorithm, in order to produce a co-located event set of a length l, does search all 2^l of its subsets since they too must be co-location patterns. This exponential complexity fundamentally restricts the algorithm to discovering only short patterns. To address this problem, we propose an algorithm for mining maximal co-located event sets which concisely represents all co-located event sets. The search strategy of our algorithm integrates a depth-first traversal of the event subset tree with effective pruning mechanisms. The experiment results show that our algorithm is computationally effective in finding co-located event sets.