Characterization of an amino-acyl tRNA enzyme from M. jannaschii for genetic applications

Seja Culpepper
Indiana University - Purdue University Fort Wayne

Jackie Kelty

Ryan Curtis
Indiana University - Purdue University Fort Wayne

Follow this and additional works at: http://opus.ipfw.edu/stu_symp2015

Part of the [Chemistry Commons](http://opus.ipfw.edu/stu_symp2015)

Recommended Citation

http://opus.ipfw.edu/stu_symp2015/18
Background:

An amino acyl t-RNA enzyme is one the most important and ancient of all enzymes. All organisms have them and their “job” is to make sure that the correct amino acid is inserted in the correct order of every protein. While our DNA determines the order of amino acids and proteins, it is this class of enzymes that makes sure the DNA’s code is followed with very few mistakes. Recently, these enzymes have been evolved away from their natural substrates so that they actually prefer non-natural amino acids.

Methods and Results:

The first goal is to obtain and purify the enzyme from bacterial expression cultures. The enzyme has a special affinity tag that facilitates its purification from the hundreds of other bacterial proteins. The second goal is to determine how efficiently the enzyme catalyzes the reaction with tyrosine. To that end, we performed affinity chromatography via Nickel resin (Scheme 1) during which the histidine tags of the enzyme bind to the nickel resin while impurities elute. The chromatography column is then flushed with an Imidazole buffer that binds competitively to the resin and washes out the desired enzyme (Scheme 2). The purified enzyme is collected in fractions.

The larger goal of our project is to determine exactly how this occurred, but the more immediate goal is to validate a new assay for assessing these enzymes efficiency. To this end, we are using a wild type, or natural, enzyme from the bacteria M. Jannaschii standardize the assay. This enzyme is known and its role in nature is to specifically insert the amino acid tyrosine into every growing protein as it is needed (Figure 1).

References:

• Tang; Tirrell Biochemistry 2002, p. 10635-10645
• Wang et. al, Science 2001, p 498
• Tippman and Schultz Tetrahedron, 2007, p. 6182