Degenerate PCR Cloning of Isopropylmalate Synthase, The Regulatory Enzyme of the Leucine Biosynthetic Pathway, From Arabidopsis Thaliana

Damian Junk
Indiana University - Purdue University Fort Wayne

George Mourad
Indiana University-Purdue University Fort Wayne, mourad@ipfw.edu

Follow this and additional works at: http://opus.ipfw.edu/stu_symp1999

Part of the Biology Commons

Recommended Citation

This Presentation is brought to you for free and open access by the IPFW Student Research and Creative Endeavor Symposium at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in 1999 IPFW Student Research and Creative Endeavor Symposium by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
DEGENERATE PCR CLONING OF ISOPROPYLMALATE SYNTHASE, THE REGULATORY ENZYME OF THE LEUCINE BIOSYNTHETIC PATHWAY, FROM *ARABIDOPSIS THALIANA*

Damian Junk and George Mourad
(George Mourad, Associate Professor of Biology)
Department of Biology, School of Arts and Sciences

The biosynthesis of the essential amino acid leucine involves the participation of isopropylmalate synthase (IPMS), isopropylmalate isomerase, isopropylmalate dehydrogenase, and a transaminase. These enzymes are well characterized in yeast and bacteria. Functional cloning attempts in *Arabidopsis* have elucidated the sequences of isopropylmalate isomerase and isopropylmalate dehydrogenase, but not isopropylmalate synthase. Isopropylmalate synthase is the site of negative feedback inhibition by the end product leucine. Being the regulatory enzyme in leucine biosynthesis, IPMS is highly conserved among organisms of different taxa. Utilizing amino acid alignments of bacteria, yeast, and two plant species, conserved regions of IPMS were identified and degenerate PCR primers were constructed. PCR yielded a 1.3 kb fragment, which will be purified, cloned, and sequenced. Upon confirmation of being a fragment of IPMS, the 1.3 kb fragment will be used as a probe to screen cDNA and genomic DNA libraries of *Arabidopsis*. Complementation tests using a leucine auxotrophic *E. coli* strain will be used to confirm the functionality of *Arabidopsis* IPMS. Molecular and biochemical characterization will be used to identify the regulatory regions of IPMS of *Arabidopsis thaliana.*