Molecular Cloning of Regulatory Sequences Controlling the Expression of Threonine Dehydratase/Deaminase

Alan M. Smith
Indiana University - Purdue University Fort Wayne

George Mourad
Indiana University-Purdue University Fort Wayne, mourad@ipfw.edu

Follow this and additional works at: http://opus.ipfw.edu/stu_symp1998

Recommended Citation
http://opus.ipfw.edu/stu_symp1998/9

This Presentation is brought to you for free and open access by the IPFW Student Research and Creative Endeavor Symposium at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in 1998 IPFW Student Research and Creative Endeavor Symposium by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
MOLECULAR CLONING OF REGULATORY SEQUENCES CONTROLLING THE
EXPRESSION OF THREONINE DEHYDRATASE/DEAMINASE
Alan M. Smith, George S. Mourad
(George S. Mourad, Assistant Professor of Biology)
Department of Biology

An *Arabidopsis thaliana* bacterial artificial chromosome genomic DNA library TAMU-BAC, obtained from ABRC stock center, was screened for the isolation of the threonine dehydratase/deaminase gene. The BAC library was probed with a threonine dehydratase specific probe cloned in this lab. The probing of the BAC library yielded two positive clones one of which was used to isolate the 5' upstream regulatory sequences of the threonine dehydratase gene. Southern blot and PCR analysis confirmed the presence of threonine dehydratase in the two positive genomic clones. An adapter ligation PCR system was used to isolate the promoter sequences which are being sequenced and molecularly analyzed for consensus promoter sequences.