4-23-1999

Complementation of a Defective Uracil Transporter of Arabadopsis Thaliana by the E. Coli Gene

Joshua Prabhakar
Indiana University - Purdue University Fort Wayne

George Mourad
Indiana University-Purdue University Fort Wayne, mourad@ipfw.edu

Follow this and additional works at: http://opus.ipfw.edu/stu_symp1999

Recommended Citation

This Presentation is brought to you for free and open access by the IPFW Student Research and Creative Endeavor Symposium at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in 1999 IPFW Student Research and Creative Endeavor Symposium by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
COMPLEMENTATION OF A DEFECTIVE URACIL TRANSPORTER OF *ARABADOPSIS THALIANA* BY THE *E. COLI URAA* GENE
Joshua Prabhakar and George Mourad
(George Mourad, Associate Professor of Biology)
Department of Biology, School of Arts and Sciences

Biosynthesis of pyrimidine nucleotides can be either by *de novo* or by salvage pathways. In *Arabadopsis*, a mutant resistant to the toxic uracil analog 5'-fluoroactic acid (FOA) was isolated by Mourad and Snook (1996). Biochemical characterization revealed that FOA resistance was due to a defective membrane transporter protein. To confirm that, the gene encoding the uracil transporter protein, *uraA*, of *E. coli* was PCR-amplified and then cloned in the plant expression vector pBI 121.1. The cloned *uraA* will then be engineered into the FOA-resistant plants by *Agrobacterium*-mediated transformation. Genetically engineered FOA-resistant plants will then be planted in medium with FOA. Loss of FOA resistance will provide molecular confirmation that FOA resistance is due to a defective membrane transporter. The uracil transporter of *Arabadopsis* will then be cloned by a map-based cloning approach.