Elderberry (Sambucus nigra) shows promise as a naturopathic treatment against melanoma in vivo and several elderberry fractions decrease melanoma and neuroblastoma cell proliferation in vitro

Alexandra M. Okihiro
Indiana University - Purdue University Fort Wayne

Follow this and additional works at: http://opus.ipfw.edu/stu_symp2013

Part of the Biology Commons

Recommended Citation
http://opus.ipfw.edu/stu_symp2013/37

This is brought to you for free and open access by the IPFW Student Research and Creative Endeavor Symposium at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in 2013 IPFW Student Research and Creative Endeavor Symposium by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
Elderberry (*Sambucus nigra*) Shows Promise as a Naturopathic Treatment Against Melanoma *in vivo* and Several Elderberry Fractions Decrease Melanoma and Neuroblastoma Cell Proliferation *in vitro*

Alexandra M. Okihiro & Dr. Elliott J. Blumenthal
Department of Biology, Indiana-Purdue University, Fort Wayne, IN, USA 46805

INTRODUCTION

Melanoma causes an estimated 71-80% of skin cancer deaths due to its aggressive metastatic nature in late stages of the disease. Incidence rates of melanoma continue to grow annually, suggesting the need for preventative anti-melanoma research.

Naturally occurring dark-pigmented berries may have such cancer-inhibiting properties. There is evidence that elderberry extracts can be incorporated into endothelial cells to protect against oxidative stress1 and stimulate an immune response that may suppress tumor growth2.

Our goal is to identify active elderberry fractions capable of modulating proliferation of melanoma both *in vivo* and *in vitro*, and to assess the ubiquity of fraction activity in other cancer cell lines. Proper identification of tumor-suppressing elderberry fractions may lead to diet-based strategies for the prevention of many cancers, including melanoma.

METHODS

C57BL/6J mice were randomly grouped into a water treated (control) group and an elderberry (10 mg/mL) treated group. Mice were given daily 0.5 mL i.p. treatment injections for 14 days before s.c. injection of 1×10^5 B16-F10 murine melanoma cells to the right flank. Treatments were continued up to day 21 and mice were sacrificed on day 27.

Column Chromatography was used to separate the components of elderberry powder. Fractions were evaporated dry and re-dissolved in 0.5 mL PBS. Neighboring active fractions were pooled.

Human melanoma (MeWo), murine melanoma (B16-F10) and human neuroblastoma (SH-SY5Y) cells were treated with 10 µL crude and pooled fraction treatments at 24 hours. Cells were tagged with 1 mCi/mL radioactive tritiated thymidine at 48 hours and were harvested and counted at 72 hours.

RESULTS

<table>
<thead>
<tr>
<th>Treatment</th>
<th>% Proliferation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.00</td>
</tr>
<tr>
<td>10 mg/mL</td>
<td>20.00</td>
</tr>
<tr>
<td>1 mg/mL</td>
<td>40.00</td>
</tr>
<tr>
<td>Pool 1</td>
<td>60.00</td>
</tr>
<tr>
<td>Pool 2</td>
<td>80.00</td>
</tr>
<tr>
<td>Pool 3</td>
<td>100.00</td>
</tr>
</tbody>
</table>

DISCUSSION

On average, control mice had larger tumors than elderberry-treated mice *in vivo* (2.88 g vs. 0.54 g, respectively).

- 67% of control tumors metastasized (vs. 0% elderberry-treated)

Pooled elderberry fractions significantly (*) decreased proliferation of multiple cancer cell lines *in vitro*.

- 72% of pooled fractions decreased MeWo growth by 20% or more
- 100% of pooled fractions decreased B16-F10 growth by 40% or more
- 100% of pooled fractions decreased SH-SY5Y growth by 20% or more

These results suggest that elderberry fractions may be useful in a naturopathic strategy to suppress multiple cancers and validates further study. Future experiments should aim to determine the chemical identity of active fractions and the cellular mechanisms by which they operate to inhibit tumor growth.

ACKNOWLEDGEMENTS

We would like to thank Artemis International Inc. (Fort Wayne, IN) and the IPFW Chemistry Department for use of their supplies and equipment.
