Activation of soybean plant defense signaling pathways in response to soybean aphid (Aphis glycines Matsumura) and Soybean mosaic virus

Erina Nowshin Sarker
Indiana University - Purdue University Fort Wayne

Damini Handa
Indiana University - Purdue University Fort Wayne

Priti Pal
Indiana University - Purdue University Fort Wayne

Follow this and additional works at: http://opus.ipfw.edu/stu_symp2013

Part of the Biology Commons

Recommended Citation
http://opus.ipfw.edu/stu_symp2013/46

This is brought to you for free and open access by the IPFW Student Research and Creative Endeavor Symposium at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in 2013 IPFW Student Research and Creative Endeavor Symposium by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
Activation of Soybean Plant Defense Signaling Pathways in Response to Soybean Aphid (Aphis Glycines Matsumura) and Soybean Mosaic Virus

Erina Sarker, Damini Handa, Priti Pal, Vamsi Nalam, Punya Nachappa
Department of Biology, Indiana University-Purdue University Fort Wayne

I. BACKGROUND

- Soybean Plant
 - Soybean (Glycine max) also called the “miracle crop”, is the primary source of vegetable protein and oil for millions of people all over the world [1] (Fig. 1).
 - Currently, U.S. is the leading producer of soybean in the world with 83.18 million metric tons [1].

- Soybean Aphid
 - The biggest threat to soybean production is an insect pest, the Soybean Aphid (SBA) (Fig. 2).
 - Aphid feeding causes leaf puckering, plant stunting, reduced pod and/or seed counts, contributing up to 45% yield loss [2].

- Soybean Mosaic Virus
 - In addition to direct damage through feeding, SBA cause indirect damage by transmitting plant viruses such as the Soybean mosaic virus (SMV) (Fig. 3) [3].
 - The major impact of SMV is the effect on seed quality.

II. LONG-TERM AND SHORT-TERM OBJECTIVES

- Long-term Objective
 - To identify plant genes that contribute host plant resistance to aphids and aphid-transmitted viruses and may be used to develop resistant soybean varieties.

- Short-term Objective
 - Determine the timing and nature of plant defense responses against SBA infestation and SMV infection.

III. METHODS

- Plant, insect and virus source
 - Soybean variety AG3432 was used for all experiments. Plants were grown at 24 ± 1°C and 16:8 hours (light:dark cycle).
 - Soybean aphids were obtained from Purdue University, West Lafayette.
 - SMV-infected plants were obtained from University of Illinois.

- Experimental Design
 - The experiment design consisted of three plant treatments - 1) infestation with twenty SMV-infected soybean aphids, 2) infestation with twenty uninfected aphids, and 3) no treatment or control plants. There were 2 replicates per treatment.
 - Plant tissues were collected at five sampling time points – 0h, 3h, 6h, 12h, and 24h post-release of aphids.

- Gene Expression Analysis
 - Plant RNA was extracted following Trizol® extraction method. The quality and quantity of the RNA was verified using a Nanodrop® Spectrophotometer.
 - The DNA-free RNA was used for complementary DNA (cDNA) synthesis and gene expression analysis using reverse-transcriptase-Polymerase Chain Reaction (RT-PCR).

IV. RESULTS

- Plant Defense Gene Expression
 - The two main plant defense pathways that were analyzed in the study were: Salicylic acid (SA) -pathway and Jasmonic acid (JA) -pathway.
 - The SA pathway is predominantly induced against pathogens and the JA pathway is activated in response to insect feeding [4].
 - In our study, GmPR1 – marker gene for SA pathway was activated in response to feeding by uninfected SBA and SMV-infected SBA (Fig. 4).
 - GmJAR1, a marker for JA pathway, was activated to a greater extent in response to feeding by SMV-infected aphids (Fig. 4).

To summarize, simultaneous attack by SBA and SMV results in the activation of both SA and JA defense pathways in soybean plants.

V. REFERENCES

VI. ACKNOWLEDGEMENTS

We would like to thank Dr. Christian Krupke for soybean seeds and aphid colonies and Dr. Houston Hobbs for SMV strain.