Summer 7-16-2013

Examining Inelastic Collisions

Mark Masters
Indiana University - Purdue University Fort Wayne, masters@ipfw.edu

James Otto
IPFW, ottojm01@students.ipfw.edu

Follow this and additional works at: http://opus.ipfw.edu/physics_facpres

Part of the [Physics Commons](http://opus.ipfw.edu/physics_facpres)

Opus Citation
http://opus.ipfw.edu/physics_facpres/61
Data collection gives a clear look at the velocity before collision, and the velocity of both carts moving together after the collision.

Using the Conservation of Momentum, the known mass, of the carts, and calculated spring constants we can start to build a picture of what is happening. A sonic detector is used to track the launch velocity of the rod cart.

When observing an elastic collision, these concepts are easily demonstrated:
1) Conservation of Momentum is clearly seen by the launch cart moving into the stationary cart, and then the stationary cart moving away.
2) Conservation of Energy is also somewhat obvious by the compressing of springs. Work is being done on the spring by the cart.

When observing an elastic collision, these concepts are easily demonstrated:
1) Conservation of Momentum is clearly seen by the launch cart moving into the stationary cart, and then the stationary cart moving away.
2) Conservation of Energy is also somewhat obvious by the compressing of springs. Work is being done on the spring by the cart.

Let’s slow it down now.
In order to get a better idea of where the energy is going in the collision a ratcheting mechanism can be installed to lock the carts together after kinetic energy from the cart is transferred into potential energy in the spring.

Results
The Potential Energy the spring holds after every collision can be plotted versus the change in Kinetic Energy providing a direct measure of what happens to the energy in the system after impact.

From the data shown below, the slope indicates a conservation of energy process, but also a loss (the intercept) attributed to friction in the ratchet.

Conclusion
This investigation provides a more visceral discovery of conservation of energy and conservation of momentum in perfectly inelastic collisions than by simple instructor statement that energy is transferred into heat, object deformation, sound, etc.