Differences in Student Evaluations of Limited-Term Lecturers and Full-Time Faculty

Jeong il Cho
Indiana University - Purdue University Fort Wayne, choj@ipfw.edu

Koichiro Otani
University of Georgia, otanik@ipfw.edu

B. Joon Kim
Kookmin University, kimbj@ipfw.edu

This research is a product of the Professional Studies faculty at Indiana University-Purdue University Fort Wayne.

Follow this and additional works at: http://opus.ipfw.edu/profstudies_facpubs

Opus Citation

http://opus.ipfw.edu/profstudies_facpubs/64

This Article is brought to you for free and open access by the Department of Professional Studies at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in Professional Studies Faculty Publications by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
Differences in Student Evaluations of Limited-Term Lecturers and Full-Time Faculty

Jeong-Il Cho
Indiana University - Purdue University Fort Wayne

Koichiro Otani
University of Georgia

B. Joon Kim
Kookmin University

This study compared student evaluations of teaching (SET) for limited-term lecturers (LTLs) and full-time faculty (FTF) using a Likert-scaled survey administered to students (*N* = 1,410) at the end of university courses. Data were analyzed using a general linear regression model to investigate the influence of multi-dimensional evaluation items on the overall rating item (*Overall, I would rate the instructor of this course as outstanding*) on the SET. Results showed that students provided higher ratings for LTLs than FTF, but they value different items when rating the overall evaluation of LTLs and FTF. Some survey items (for instance, those about instructor planning and enthusiasm) influence more on the rating of the overall item for LTLs than for FTF, whereas other, multi-dimensional items (for instance, those about assessment strategies and instructor’s availability) influence more on the overall rating for FTF than for LTLs. Data and discussions of results identify the differences and suggest strategies for improving teaching effectiveness based on the ratings provided by students.

Do university students evaluate the teaching effectiveness of limit-
ed-term lecturers (LTLs) and full-time faculty (FTF) on the end-of-course evaluation form differently? What aspects (that is, the multi-dimensional evaluation items) influence students’ overall rating of teaching effectiveness (that is, the global item on the student evaluation form) of LTLs and FTF? Despite the fact that the increasing use of LTLs is a national trend in providing instruction to students across disciplines in higher education institutions (American Association of University Professors [AAUP], 2006; Sonner, 2000), only a few empirical studies have focused on the teaching effectiveness of LTLs (Klein, Weisman, & Smith, 1996; Landrum, 2009; Langen, 2011; Sonner, 2000). Consequently, how students evaluate the teaching of LTLs in comparison with that of FTF is still in debate in higher education, especially at four-year universities. LTLs or adjunct professors typically are practitioners who work full-time and have considerable real-world experiences in community-based workplaces and specialized technical skills in their fields (Wallin, 2004). LTLs are employed at higher education institutions in increasing numbers for various reasons, which include their real-world experiences, their specialized knowledge, and the scheduling flexibility and cost effectiveness they offer to institutions (Wallin, 2007).

The Teaching Effectiveness of Limited-Term Lecturers and Full-Time Faculty

Inconsistent results have been reported on the teaching effectiveness of LTLs using student evaluations of teaching (SET), exam results, grades, graduation rates, and the like (Hellman, 1998; Jackson, 1986; Landrum, 2009; Rifkin, 1998; Sonner, 2000). Among studies on the comparison of teaching effectiveness of LTLs and FTF, only a limited number of studies attempted a systematic analysis of SET data (Hellman, 1998). Other studies have focused mostly on differences between LTLs and FTF using a simple mean comparison of the SET ratings, uncontrollable variables (for example, student or instructor demographic characteristics), and disparity in the distribution of grades or graduation rates, measures that may not represent the teaching effectiveness of instructors accurately. Another pattern that emerged in previous studies with LTLs showed that many of these studies focused on the teaching ratings of LTLs at two-year colleges, including community and/or technical colleges, and that little is known about LTLs at four-year institutions.

When comparing SETs for LTLs versus FTF, an older study by Jackson (1986) showed that FTF were rated higher than LTLs on knowledge of the subject and class preparation. Yet another study by Hellman (1998)
showed no such differences in community colleges, even though this study used rather a systematic statistical analysis of the SET data (for instance, factor structures) than simple mean comparisons. In a more recent study, Jacoby (2006) shifted the focus on graduation rates to investigate the difference between LTLs and FTF and concluded that the decrease in graduation rates was related to the increase in the number of LTLs. Yet Landrum (2009) found no difference in LTLs and FTF when using multiple measures in addition to SETs.

With a marked increase in the number of LTLs in higher education institutions in recent years, previous research justifies the need for the continued use of LTLs in educating university students. However, these studies suggest a tendency to concentrate on uncontrollable variables (for example, class size, curricular area, prior interest in the course topic, expected grades, workload, difficulty, whether a course is required or elective, challenge level of course, instructor characteristics, and course format—whether online or traditional) rather than controllable variables (for example, teaching strategies, assessment strategies, course learning objectives, and classroom environment). This tendency does not seem to support a recent proposal from the United Kingdom (UK) National Conference on Student Evaluation that universities need to make effective use of routinely collected SET data to improve the quality of teaching at program, department, and college levels, disseminate the outcomes, and make a timely response to student needs and requests (Griffin & Cook, 2009). Also, this trend does not contribute to the identification of urgent, practical recommendations for teaching that LTLs and FTF can practice and implement in their classes in an effort to improve their teaching effectiveness.

The Use of Student Evaluations of Teaching

Documented issues with SETs include their weak validity and uncertain connection between teaching effectiveness and student learning (Galbraith, Merrill, & Kline, 2012; Theall, Abrami, & Mets, 2001). Yet the professional literature has acknowledged that SETs have the potential to produce valuable data for a better understanding of LTLs’ teaching effectiveness compared to FTF; to inform LTLs, FTF, and other interested parties (such as students and university administrators) about similarities and differences in teaching; and, ultimately, to provide a snapshot of the unique value of LTLs in higher education. Wolfer and Johnson (2003) emphasized the importance of making effective use of SET data for individual teaching improvement. Without prioritizing influential items on
SETs through a systemic analysis, LTLs and FTF might feel compelled arbitrarily to choose some aspects over others in the hope that future students’ overall satisfaction with their teaching would improve.

The SET is the most common method of evaluating the teaching effectiveness of university instructors. For FTF, universities use multiple teaching effectiveness measures, including evidence of improvements in teaching, recommendation letters from external and internal reviewers, course portfolios, peer observations, and student evaluations and comments. However, such comprehensive multiple measures of teaching are not typically applied to LTLs. In general, universities rely on student evaluation data as a major measure (often the sole measure) of the teaching performance of LTLs. Langen (2011) investigated the teaching performance of LTLs with SET data from both two- and four-year higher education institutions and reported that the SET results were, after all, the most trusted source for overall evaluation purposes, both formative and summative.

Universities have attempted to make an effective, innovative use of SETs and to consider SET results for instructors, particularly FTF, as part of a program improvement plan (Campbell & Bozeman, 2008; Griffin & Cook, 2009; Wolfer & Johnson, 2003). However, there is a key component missing in this plan: LTLs. The results of SET for FTF are shared, systematically analyzed, and compared across semesters/years, and thoroughly reviewed by colleagues. FTF routinely receive annual reviews, recommendations for merit raises, reappointment determinations, and peer reviews/observation of teaching that are used to advance their individual teaching performance (d’Apollonia & Abrami, 1997; McKeachie, 1997). This is not a typical practice with the results of SETs for LTLs, however. SET results for LTLs are often underutilized, not systematically analyzed, and not seriously communicated to LTLs with the same rigor as they are to FTF.

The lack of empirical research on SETs related to the type of instructors (LTLs versus FTF), including what evaluation items on the SET are reported by students in assessing the overall teaching effectiveness of LTLs and FTF, led us to conduct this study. Using SET data, weaker aspects of instructor teaching can easily be identified. However, a simple prioritizing approach such as this fails to identify which aspect(s) of instructors’ performance need to be improved first and most urgently. A recent study attempted to identify and rank-order which aspects of teaching were more influential than others to students’ overall satisfaction with instructor teaching (Otani, Kim, & Cho, 2012). However, this study considered LTLs and FTF as one group, did not focus on unique patterns of each group, and did not address possible differences between LTLs and FTF.
On the SET, students are asked to reflect on each of the evaluation items to determine their overall evaluation of an instructor’s teaching effectiveness. Some aspects are more influential than others in determining their overall evaluation level of an instructor’s teaching effectiveness (Otani et al., 2012). Therefore, it is logical to predict that students are more likely to evaluate their instructor’s teaching effectiveness highly when they have positive experiences with those more influential aspects. It is also probable that students tend to indicate dissatisfaction with a course and instructor when they have a negative experience with those influential aspects. This dissatisfaction can occur even when students have a favorable view of other aspects that they consider less influential or non-influential. The Fishbein model (Fishbein & Ajzen, 1975), which identifies which aspects are more or less influential than others in arriving at an overall evaluation of an instructor’s teaching performance, suits the purpose of this study. This seminal model was originally developed to explain individuals’ general attitudes. It has often been used in marketing to predict customers’ choices of products by identifying the multiple attributes influencing their choices. Many studies have used this model in customer satisfaction research, including patient satisfaction (Otani, Kurz, & Harris, 2005) and student evaluations of teaching in education (Otani, Kim, & Cho, 2012). The Fishbein model can be applicable and helpful to studies of the SET. This model suggests that to improve students’ overall evaluation of instructors, a strategic improvement on the most influential aspects is more critical than improving less influential aspects.

Methodology

Participants and Setting

This study utilized SET data from the department of public policy at one university in the Midwestern U.S. The SET data include 1,410 student responses collected over three academic semesters: Fall, 2009 (677 cases; 48.0%), Spring, 2010 (680 cases; 48.2%), and Summer, 2010 (53 cases; 3.8%). Among them, LTLs taught 545 cases (38.7%), and FTF taught 859 cases (60.9%). The SET survey used in this study is routinely administered at the end of each semester. Instructors distributed the SET survey in each class, but the instructors were not allowed to remain in the classroom while students completed the survey. One student in each class was asked to collect the completed surveys and brought them directly to the office responsible for collecting the surveys.

In order to maintain confidentiality, the SET survey does not elicit data
on students’ demographic backgrounds. Thus, we provide general demographic information for all students in the department at the time of this study. In fall 2009, 498 students were enrolled: 229 males (46%) and 269 females (54%). The average ages for male and female students were 23.8 and 26.9, respectively. Among 453 undergraduate students, 76.2% were full-time, and 23.8% were part-time. Among the 45 graduate students, 35.6% were full-time, and 64.4% were part-time. Among all students in the study, 403 (80.9%) were Caucasian, 57 (11.4%) were Black, 11 (2.2%) were Hispanic, 7 (1.4%) were Asian, 2 (0.4%) were American Indian, and 12 (2.4%) identified as “Other.” Six international students (1.2%) were also enrolled. The public policy department offers five majors: criminal justice, environmental policy, health services administration, legal studies, and public management. The numbers of students in these classes ranged from 6 to 45, with a typical class size of 30. The department has nine full-time faculty members (six male and three female). Fifteen LTLs were hired and normally taught one course each semester.

Instrument

The public policy department employs a unified 14 evaluation-item SET, including 13 multi-dimensional items, across all classes. Consistent with the recommendation by Cashin and Downey (1992), the SET also contains one global rating item that indicates the overall evaluation of an instructor’s teaching effectiveness: Question 14. “Overall, I would rate the instructor of this course as outstanding.” The global item was used as the dependent variable in the study. The current set of SET evaluation items has been in use for more than 10 years. It uses a 5-point Likert-type scale from 1 (strongly disagree) to 5 (strongly agree). All evaluation items are listed in Table 1 in their original order in the SET survey.

Data Analysis

This study examined differences in student perceptions of teaching effectiveness between LTLs and FTF by distinguishing and prioritizing influential aspects on the SETs for LTLs and FTF separately. The study used a general linear regression model, often called ordinary least squares. The study analyzed the relative importance of the 13 multi-dimensional items in arriving at an overall rating that is reflected on the rating of the global item for LTLs and FTF. In other words, the study evaluated the 13 items and attempted to find which items have more influence on students’ overall rating for LTLs and FTF separately. The general regression model for the i^{th} case is as follows: Y is students’ overall evaluation of
teaching, a is the intercept, b_i is a coefficient, x_i is an experience of the i^{th} aspect, and e is an error term. The significance of b_i and the value of R^2 were examined to test the model’s fit using the following formula:

$$Y = a + \sum_{i=1}^{n} b_i x_i + e$$

Results

We analyzed correlational coefficient and found that all correlation coefficients are smaller than 0.8 among independent variables. A high value
(about 0.8 or 0.9 in absolute value) indicates higher correlation (Kennedy, 1998). Lewis-Beck (1980) claims to look for coefficients of about 0.8 or larger for possible colinearity. The scores of the variance inflation factors (VIF) are used as a colinearity test, and any value larger than 10 needs to be reviewed (Kleinbaum, Kupper, & Muller, 1988; Kennedy, 1998). This criterion was used throughout this report, and there was no VIP value larger than 10. Students’ average responses for independent variables (13 multi-dimensional evaluation items) for LTLs (ranging from 4.41 to 4.76) generally are higher than those for FTF (ranging from 3.90 to 4.45) (see Table 2). The average overall evaluation (dependent variable) for LTLs is higher than that for FTF (4.66 and 3.96, respectively). The descriptive statistics and the descriptions of all 13 items for LTLs and FTF are shown in Table 2, respectively.

A multiple linear regression analysis was conducted for LTLs and FTF independently, and the results are shown in Table 3. For LTLs, the R^2 is 0.714. The model explains 71.4% of the variance in Y. The analysis revealed that certain variables are more influential than others when students rate their overall evaluation of the teaching effectiveness of LTLs. The magnitude of influence is determined by the value of the coefficient. The larger the value of the coefficient, the more influence. For LTLs, the most influential variable is Q1 (The coefficient is 0.190), followed by Q3, Q2, Q10, Q13, Q4, and Q12 (coefficients ranging from 0.008 to 0.169), in this order. All variables are statistically significant at the $\alpha = 0.05$ level and positively related. Other variables (Q5, Q6, Q7, Q8, Q9, and Q11) are not statistically significant at the $\alpha = 0.05$ level.

The R^2 is 0.835 for FTF. The model explains 83.5% of the variance in Y. The analysis also revealed that certain variables are more influential than others when students rate their overall evaluation of the teaching effectiveness of FTF. The most influential variable is Q2 (the coefficient is 0.394), followed by Q12, Q4, Q10, Q7, Q5, Q13, and Q8 (coefficients ranging from 0.081 to 0.151). All variables are statistically significant at the $\alpha = 0.05$ level and positively related. Other variables (Q1, Q3, Q6, Q9, and Q11) are not statistically significant at the $\alpha = 0.05$ level. Compared to FTF, LTLs have more statistically significant evaluation items: 9 versus 12 aspects.

Discussion

The main aim of this study was to investigate differences in influential aspects (multi-dimensional items) on the overall evaluation (global evaluation item) of the teaching performance of LTLs versus FTF. The study specifically investigated which aspects were more influential than others
Table 2
Descriptive Statistics of Evaluation Items for LTLs and FTF

<table>
<thead>
<tr>
<th>Question Items</th>
<th>LTLs</th>
<th></th>
<th></th>
<th></th>
<th>FTF</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Q1. Class preparation</td>
<td>4.76</td>
<td>.551</td>
<td>543</td>
<td>4.45</td>
<td>.947</td>
<td>858</td>
<td></td>
</tr>
<tr>
<td>Q2. Clear explanation</td>
<td>4.65</td>
<td>.670</td>
<td>545</td>
<td>3.93</td>
<td>1.254</td>
<td>859</td>
<td></td>
</tr>
<tr>
<td>Q3. Enthusiasm</td>
<td>4.66</td>
<td>.677</td>
<td>544</td>
<td>4.37</td>
<td>1.011</td>
<td>858</td>
<td></td>
</tr>
<tr>
<td>Q4. Stimulating materials</td>
<td>4.41</td>
<td>.853</td>
<td>545</td>
<td>3.90</td>
<td>1.193</td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>Q5. Instructor availability</td>
<td>4.50</td>
<td>.814</td>
<td>544</td>
<td>4.29</td>
<td>.987</td>
<td>859</td>
<td></td>
</tr>
<tr>
<td>Q6. Knowing expectation</td>
<td>4.67</td>
<td>.671</td>
<td>544</td>
<td>4.13</td>
<td>1.131</td>
<td>859</td>
<td></td>
</tr>
<tr>
<td>Q7. Comprehensive exam</td>
<td>4.63</td>
<td>.700</td>
<td>545</td>
<td>3.99</td>
<td>1.166</td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>Q8. Fair assessment</td>
<td>4.74</td>
<td>.587</td>
<td>544</td>
<td>4.11</td>
<td>1.122</td>
<td>857</td>
<td></td>
</tr>
<tr>
<td>Q9. Course objectives</td>
<td>4.71</td>
<td>.577</td>
<td>544</td>
<td>4.24</td>
<td>1.020</td>
<td>858</td>
<td></td>
</tr>
<tr>
<td>Q10. Positive environment</td>
<td>4.77</td>
<td>.548</td>
<td>545</td>
<td>4.23</td>
<td>1.160</td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>Q11. Encouragement</td>
<td>4.71</td>
<td>.585</td>
<td>544</td>
<td>4.28</td>
<td>1.028</td>
<td>855</td>
<td></td>
</tr>
<tr>
<td>Q12. Use of class time</td>
<td>4.63</td>
<td>.742</td>
<td>545</td>
<td>4.15</td>
<td>1.170</td>
<td>858</td>
<td></td>
</tr>
<tr>
<td>Q13. New knowledge</td>
<td>4.69</td>
<td>.644</td>
<td>542</td>
<td>4.17</td>
<td>1.128</td>
<td>857</td>
<td></td>
</tr>
<tr>
<td>Dependent Variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q14: Overall Evaluation</td>
<td>4.66</td>
<td>.664</td>
<td>539</td>
<td>3.96</td>
<td>1.267</td>
<td>846</td>
<td></td>
</tr>
</tbody>
</table>
Table 3
Parameter Estimates of All Question Items and Rank Order of Significant Items

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Parameter Estimates</th>
<th>P Value</th>
<th>Rank Order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LTLs</td>
<td>FTF</td>
<td>LTLs</td>
</tr>
<tr>
<td>Intercept</td>
<td>-.424</td>
<td>-.536</td>
<td>.017</td>
</tr>
<tr>
<td>Q1. Class preparation</td>
<td>.190</td>
<td>-.002</td>
<td>.000</td>
</tr>
<tr>
<td>Q2. Clear explanation</td>
<td>.155</td>
<td>.394</td>
<td>.000</td>
</tr>
<tr>
<td>Q3. Enthusiasm</td>
<td>.169</td>
<td>-.013</td>
<td>.000</td>
</tr>
<tr>
<td>Q4. Stimulating materials</td>
<td>.070</td>
<td>.126</td>
<td>.010</td>
</tr>
<tr>
<td>Q5. Instructor availability</td>
<td>.037</td>
<td>.082</td>
<td>.142</td>
</tr>
<tr>
<td>Q6. Knowing expectation</td>
<td>.071</td>
<td>.017</td>
<td>.081</td>
</tr>
<tr>
<td>Q7. Comprehensive exam</td>
<td>.060</td>
<td>.095</td>
<td>.096</td>
</tr>
<tr>
<td>Q8. Fair assessment</td>
<td>.029</td>
<td>.081</td>
<td>.496</td>
</tr>
<tr>
<td>Q9. Course objectives</td>
<td>-.015</td>
<td>-.002</td>
<td>.735</td>
</tr>
<tr>
<td>Q10. Positive environment</td>
<td>.102</td>
<td>.124</td>
<td>.011</td>
</tr>
<tr>
<td>Q11. Encouragement</td>
<td>.064</td>
<td>-.022</td>
<td>.083</td>
</tr>
<tr>
<td>Q12. Use of class time</td>
<td>.008</td>
<td>.151</td>
<td>.040</td>
</tr>
<tr>
<td>Q13. New knowledge</td>
<td>.089</td>
<td>.082</td>
<td>.017</td>
</tr>
</tbody>
</table>

Note. LTLs: $R^2 = .714; n = 513$; FTF: $R^2 = .835; n = 827$
on the overall satisfaction of teaching performance on SET by rank-ordering influential aspects and comparing them between LTLs and FTF. In contrast to studies raising various concerns about the effectiveness and quality of instruction provided by LTLs (Jackson, 1986; Rifkin, 1998), the results of this study are consistent with previous studies, in that LTLs are highly evaluated by university students (Gappa & Leslie, 1993; Klein et al., 1996) (see Table 2). More importantly, the results showed that the processes students used to combine 13 aspects to arrive at their overall evaluation of teaching effectiveness for LTLs and FTF were different.

The results of the study indicated that not all aspects that were seen as influential to the overall evaluation for LTLs had the same effect for FTF, and vice versa (see Table 3 and Figure 1). The most influential aspect on the global evaluation item when rating the teaching performance of LTLs was Q1 (My instructor is well prepared for class meetings). Other significantly influential aspects for LTLs were in the following descending order: Q3. My instructor is enthusiastic about teaching this course; Q2. My instructor explains the subject clearly; Q10. My instructor created an environment in which students felt comfortable asking questions and expressing their views; Q13. I acquired new knowledge in this course; Q4. Course materials were thought-provoking and stimulating; and Q12. My instructor made effective use of class time. For FTF, we noted that Q2 was far more influential than other influential aspects on the overall evaluation of FTF. Seven other influential aspects for FTF include Q12. My instructor made effective use of class time; Q4. Course materials were thought-provoking and stimulating; Q10. My instructor created an environment in which students felt comfortable asking questions and expressing their views; Q7. The exams cover the most important attributes of the course; Q5. My instructor is available for consultation; Q13. I acquired new knowledge in this course; Q8. My instructor evaluated student work in fair and appropriate ways, respectively. (Only influential items are listed to aid readers’ understanding.)

Five common influential aspects between the seven influential aspects for LTLs and the eight influential aspects for FTF were found: Q2. My instructor explains the subject clearly; Q4. Course materials were thought-provoking and stimulating; Q10. My instructor created an environment in which students felt comfortable asking questions and expressing their views; Q12. My instructor made effective use of class time; and Q13. I acquired new knowledge in this course (see Figures 1a and 1b). These common aspects are about quality learning experiences, a positive learning environment, and effectiveness and efficiency in lecture and time management. This finding is consistent with the previous literature that students, regardless of the type of instructor (LTLs or FTF), were eager to gain new knowledge, expected
Figure 1a
Comparison of the Relative Importance of Influential Aspects in Student Evaluations of Teaching for LTLs

Influential Aspects for LTLs

Parameter Estimate

Q1 Q3 Q2 Q10 Q13 Q4 Q12

Legend:
- White: Influential for both LTLs and FTF
- Black: Influential only for LTLs
- Gray: Influential only for FTF
Differences in Student Evaluations

Figure 1b
Comparison of the Relative Importance of Influential Aspects in Student Evaluations of Teaching for FTF

Parameter Estimate

Influential Aspects for FTF

- Q2: Influential for both LTLs and FTF
- Q12: Influential only for LTLs
- Q4, Q10, Q7, Q5, Q13, Q8: Influential only for FTF
thought-provoking and stimulating learning experiences (Feldman, 1988; Merrill, 2002), and valued instructors’ clear presentation of materials (Goldstein & Benassi, 2006).

The influence levels of the highest- to lowest-ranked influential aspects were gradually decreasing for LTLs. Such a gradual decline, however, was not found in the evaluation of SETs for FTF. This difference is especially evident with two aspects: Q2. *My instructor explains the subject clearly* and Q12. *My instructor made effective use of class time.* For FTF, Q2 was far more influential than the second most influential aspect, Q12. Other aspects following Q12 were gradually decreasing in terms of the degree of influence. It appears clear that students considered Q2 (clear explanation) as a more important qualification of FTF than LTLs. While Q12 (use of class time) was the second-highest-ranked aspect for FTF, it was ranked as the seventh-most influential aspect for LTLs. These results indicated that students expected clear explanations and effective use of class time more from FTF than from LTLs.

Influential aspects that were statistically significant only for one type of instructor (LTLs or FTF) were also observed in the study. The first- and second-highest-ranked influential aspects for LTLs (Q1. *My instructor is well prepared for class meetings* and Q3. *My instructor is enthusiastic about teaching this course*) were not statistically significant for the overall evaluation of FTF. Three aspects (Q7. *The exams cover the most important attributes of the course*; Q5. *My instructor is available for consultation*; and Q8. *My instructor evaluated student work in fair and appropriate ways*, respectively) were influential only for FTF. These results indicated that students perceived a high level of class preparation and enthusiasm to be an important qualification when evaluating LTLs. Based on a previous study, this result about instructors’ availability perhaps is reflective of the fact that students typically know that LTLs mostly work full time in the community and are less likely to have an office or hold office hours on campus (Landrum, 2009). Regarding assessment aspects that were influential for FTF, students were generally more conscientious of their grade when they were in classes taught by FTF. Sonner (2000) reported grading inflation with classes taught by LTLs: Students in the classes taught by LTLs received higher grades than those in classes taught by FTF. In this era of accountability, FTF are conscientious of objective assessment strategies, student grades, and are directly responsible for designing, implementing, improving the program assessment system, and reporting to an accrediting agency. In contrast, LTLs are less likely to play a significant role in these assessment-related activities and in curriculum development (Rifkin, 1988).

Finally, attention should be given to aspects of instruction that were not
Differences in Student Evaluations

Differences in Student Evaluations

I know what is expected of me in this course and Q9. This course fulfilled the objectives described in the syllabus. This finding is consistent with the existing literature, which reports that students place less importance on self-initiated, independent learning than on other items (Feldman, 1988). Even though students’ understanding of course expectations and the importance of course objectives is not directly under instructors’ control, it still can be influenced by instructors’ conscientious efforts to emphasize the importance of course learning objectives and explicitly to make logical connections between the objectives, various course activities, and assessment (Combs, Gibson, Hays, Saly, & Wendt, 2008).

Limitations and Suggestions

Identifying patterns among areas in need of improvement as reflected in the SET is a challenge (Wolfer & Johnson, 2003). Without a systematic analysis and prioritization of the teaching evaluation information about instructors provided by students on the SET, instructors may arbitrarily choose some aspects over others in the hope that future students’ satisfaction with their teaching effectiveness will be reflected positively on the SET. This study identified students’ perceived differences between LTLs and FTF instruction to assist instructors in making improvements. There are, however, several limitations. First, because this was not an experimental but a cross-sectional study, establishing a cause-and-effect relationship was a challenging task. However, the well-established Fishbein model (Fishbein & Ajzen, 1975) was used in order to support such a relationship. This relationship could be more strongly established in an intervention study that examines the improvement of teaching, especially of influential aspects.

A second limitation is that the SET employed for the study used a Likert-type scale that produces ordinal data. Some researchers question the appropriateness of using a general regression model for analyzing ordinal data. However, previous research demonstrated that regression models are frequently used for analyzing ordinal data because of their appropriateness and usefulness, and the results of such data analyses are robust in general (Labovits, 1970; O’Sullivan & Rassel, 1989). Third, it should be acknowledged that the SET survey used in this study may not represent all aspects that are influential to the teaching effectiveness of instructors. This could result in biased estimates. Even though the instrument was developed with careful consideration of its validity and reliability, further modification and investigation of the survey items may be necessary to
determine its comprehensiveness. Finally, the data were collected in one department of a four-year institution. While the size of the data set (N = 1,410) is large enough for a sound statistical analysis, generalization of these findings to all public policy departments or to other university departments and programs requires caution. Other variables, such as students’ academic fields of study and level of the courses, may differently influence students’ evaluation of instructors (Cashin, 1990; Vahala & Winston, 1994; Yunker & Yunker, 2003). In addition, this study did not use a random sample of students but was based on a single department’s course evaluation at one university. Future studies comparing student evaluations of LTLs and FTF might need to involve a larger, multi-institutional data set from different disciplines and from universities that hire a larger number of LTLs.

Conclusions

The contribution of this study is in its focus on the influential yet controllable aspects of SETs toward understanding how LTLs and FTF were evaluated by students at a four-year university. This study reported students’ differing focuses in their evaluations of the teaching performance of LTLs and FTF. When evaluating their instructors, students assigned different levels of importance to evaluation aspects for LTLs versus FTF. While instructors’ planning efforts and enthusiasm were a strong focus in the evaluation of LTLs, assessment strategies and an instructor’s availability were important evaluation considerations exclusively for FTF. For both types of instructors, at varying levels of influence, students valued clarity in presentation of materials, a positive learning environment, the acquisition of new knowledge, the effective use of class time, and stimulating course materials.

The results of this study emphasize the importance of involving both LTLs and FTF in recognizing what students expect in teaching as expressed in SETs and responding to these expectations in an effective, collective manner. Administrators can play a role here. In general, FTF are more likely to acquire both new knowledge in the field and effective teaching strategies through continuous professional development activities offered by universities or professional conferences (Rifkin, 1998). Administrators need to ensure that all instructors, including LTLs, are knowledgeable about departmental or program-level expectations, such as assessment systems, standards, and curriculums, and that they have access to university services, including library services, professional development activities, on-campus office spaces, telephones, and e-mail accounts. Both
LTLs and FTF need to be well informed of the institution’s needs as well as the needs of their students, and administrators can help instructors recognize the vital role they play in student learning (Fagan-Wilen, Springer, Ambrosino, & White, 2006; Wallin, 2007; Ziegler & Reiff, 2006). Through various efforts to respond systematically to students’ input, including the SET, university instructors can have more positive teaching experiences and achieve better learning experiences for their students.

References

about excellent lecturers and discussion leaders. *Research in Higher Education, 47*(6), 685-707.

Author Note

This research was supported in part by the Collaborative Research and Community Grant from the College of Education and Public Policy at Indiana University-Purdue University Fort Wayne. This study has been approved by Institutional Review Board at Purdue University, Ref. No. 100609404. Correspondence concerning this article should be addressed to Jeong-IL Cho, Department of Professional Studies, Indiana University - Purdue University Fort Wayne, Fort Wayne, IN 46805 (choj@ipfw.edu).

Jeong-IL Cho, Ph.D., is an assistant professor in the department of professional studies at Indiana University - Purdue University Fort Wayne. Her research focuses on creating an effective, positive learning environment: friendship and bullying interactions among students with and without disabilities, pre-service and in-service teacher training on assistive technology for students with disabilities, and the use of student course evaluation in higher education. Her research has been published in professional journals, including Education and Treatment of Children, Childhood Education, International Journal of the Scholarship of Teaching and Learning, and International Education Studies.

Koichiro Otani, Ph.D., is an associate professor in the department of health policy and management at the University of Georgia. His research interests include student course evaluation studies, a wide range of patient satisfaction, and healthcare systems. He was a founding director of the Japanese Saturday School and a faculty member at the College of Education and Public Policy, Indiana University - Purdue University Fort Wayne. He has published teaching articles in the Journal of Public Affairs Education and the International Journal of Public Administration as well as patient satisfaction articles in various healthcare management journals.

B. Joon Kim, Ph.D., is an assistant professor in the department of public administration and public policy at Kookmin University. His current research focuses on the role of community groups in e-governance/e-democracy, the social impact of information and communication technology on citizen interaction and collaborative governance, and multilevel analysis of civic engagement. His research has appeared in The Internet and Higher Education, Journal of Public Affairs Education, Health Marketing Quarterly, Administration & Society, Information, Communication & Society, and Computer Supported Cooperative Work, among others.