Summer 8-19-2015

External field energy problems on the sphere and minimal energy points separation

Peter D. Dragnev
Indiana University - Purdue University Fort Wayne, dragnevp@ipfw.edu

Peter Boyvalenkov
Bulgarian Academy of Sciences

Douglas P. Hardin
Vanderbilt University

Edward Saff
Vanderbilt University

Maya Stoyanova
Sofia University

Follow this and additional works at: http://opus.ipfw.edu/math_facpres

Part of the Analysis Commons, Numerical Analysis and Computation Commons, and the Other Physical Sciences and Mathematics Commons

Opus Citation
External Field Problems on the Sphere and Minimal Energy Points Separation

P. D. Dragnev*

Indiana University-Purdue University Fort Wayne (IPFW)

* joint work with J. S. Brauchart - TU Graz and E. B. Saff - Vanderbilt
External Field Problem in \mathbb{C} - overview

Classical energy problems
- Electrostatics - capacity, equilibrium measures;
- Geometry - transfinite diameter;
- Polynomials - Chebyshev constant discrete orthogonal polynomials
- Classical theorem in potential theory

External field problems
- Characterization theorem of weighted equilibrium
- Examples
- Applications to orthogonal polynomials on the real line

Constrained energy problems
- Characterization theorem of constrained equilibrium
- Examples
- Applications to discrete orthogonal polynomials
Classical energy problem and equilibrium measure

Electrostatics - capacity of a conductor $\text{cap}(E)$

E - compact set in \mathbb{C}, $\mu \in \mathcal{M}(E)$ - probability measure on E;

Equilibrium occurs when potential (logarithmic) energy $I(\mu)$ is minimized.

$$V_E := \inf \{ I(\mu) := -\int \int \log |x-y| \, d\mu(x)d\mu(y) \}, \quad \text{cap}(E) := \exp(-V_E)$$

Remark: For Riesz energy we use Riesz kernel $|x-y|^{-s}$ instead.

Equilibrium measure μ_E

If $\text{cap}(E) > 0$, there exists unique μ_E : $I(\mu_E) = V_E$.

Potential satisfies $U^{\mu_E}(x) = -\int \log |x-y| \, d\mu(y) = C$ on E.

Examples

- $E = \mathbb{T}$, $d\mu_E = d\theta/(2\pi)$
- $E = [-1, 1]$, $d\mu_E = dx/\pi \sqrt{1-x^2}$
Classical theorem in potential theory

Geometry - transfinite diameter of a set $\delta(E)$

E - compact set in \mathbb{C}, $Z_n = \{z_1, z_2, \ldots, z_n\} \subset$ of E;

Maximize Vandermond (product of all mutual distances)

$$\delta_n(E) := \max_{Z_n \subset E} \left(\prod_{1 \leq i < j \leq n} |z_i - z_j| \right)^{2/(n(n-1))}, \quad \delta(E) := \lim \delta_n(E)$$

Approximation Theory - Chebyshev constant $\tau(E)$

E - compact set in \mathbb{C}, $T_n(x)$ - monic polynomial of minimal uniform norm;

$$t_n(E) := \min \{ ||x^n - p_{n-1}(x)|| : p_{n-1} \in \mathbb{P}_{n-1} \}, \quad \tau(E) = \lim t_n^{1/n}(E)$$

Classical theorem (Fekete, Szegö)

$$\text{cap}(E) = \delta(E) = \tau(E)$$
Electrostatics - add external field

E - closed set in \mathbb{C}, Q - lower semi-continuous on E (growth cond.);

$$V_Q := \inf \{I_Q(\mu) := I(\mu) + 2 \int Q(x) \, d\mu(x)\}$$

Theorem - Weighted equilibrium μ_Q

There exists unique μ_Q : $I_Q(\mu_Q) = V_Q$.

Potential satisfies: $U_{\mu_Q}(x) + Q(x) \geq C$ q.e. on E

$U_{\mu_Q}(x) + Q(x) \leq C$ on supp(μ_Q).

Applications

- Orthogonal polynomials on real line
- Approximation of functions by weighted polynomials
- Integrable systems
- Random matrices
Proof of the characterization theorem

Let E - compact, Q - continuous. Then $I_Q : \mathcal{M}(E) \to \mathbb{R}$ is lower semi-continuous functional, i.e. if $\mu_n \to \mu$ weak* then

$$\lim \inf I_Q(\mu_n) \geq I_Q(\mu).$$

Let \{\mu_n\} s.t. $I_Q(\mu_n) \to V_Q$. Select a weak* convergent subsequence $\mu_{n_k} \to \mu$, $\mu \in \mathcal{M}(E)$. Then $I_Q(\mu) = V_Q$.

The positive definiteness of the energy functional implies uniqueness.

To show the first characterization inequality, suppose

$$\text{cap}\{x : U^{\mu_Q}(x) + Q(x) < V_Q - \int Q(x) d\mu_Q(z) =: F_Q\} > 0.$$

Then there is n s.t. $\text{cap}(K_n) = \text{cap}(\{x : U^{\mu_Q}(x) + Q(x) \leq F_Q - \frac{1}{n}\}) > 0$. Then for small enough $\alpha > 0$, $I_Q(\alpha \mu_{K_n} + (1 - \alpha)\mu_Q) < I_Q(\mu_Q)$.

Finally, if there is $x_0 \in \text{supp}(\mu_Q)$, s.t. $U^{\mu_Q}(x_0) + Q(x_0) > F_Q$ then $I_Q(\mu_Q) > V_Q$, a contradiction.
Constrained energy problem

Electrostatics - add external field and upper constraint

Add constraint measure $\sigma: \sigma(E) > 1$

$$ V^\sigma_Q := \inf \{ I_Q(\mu) := I(\mu) + 2 \int Q(x) d\mu(x) : \mu \leq \sigma \} $$

Applications: Discrete orthogonal polynomials, random walks, numerical linear algebra methods, etc.

Theorem (Saff-D. ’97) - Constrained equilibrium λ^σ_Q

There exists unique $\lambda^\sigma_Q : I_Q(\lambda^\sigma_Q) = V^\sigma_Q$.

Potential satisfies:

$U^{\lambda^\sigma_Q}(x) + Q(x) \geq C$ on supp$(\sigma - \lambda^\sigma_Q)$

$U^{\lambda^\sigma_Q}(x) + Q(x) \leq C$ on supp(μ).

Theorem (Saff-D. ’97) - Constrained vs. weighted equilibrium

If $Q \equiv 0$, then $\sigma - \lambda^\sigma = (\|\sigma\| - 1)\mu_Q$ for $Q(x) = -U^\sigma(x)/(\|\sigma\| - 1)$
Recall from yesterday
Why search for minimal energy optimal) configurations on the sphere?

Numerous applications in:

- Physics
- Biology
- Chemistry
- Computer Science
Thomson Problem (1904) -
("plum pudding" model of an atom)

Find the (most) stable (ground state) energy configuration of \(N \) classical electrons (Coulomb law) constrained to move on the sphere \(S^2 \).

Generalized Thomson Problem (\(1/r^s \) potentials and \(\log(1/r) \))

A configuration \(\omega_N := \{x_1, \ldots, x_N\} \subset S^2 \) that minimizes Riesz \(s \)-energy

\[
E_s(\omega_N) := \sum_{j \neq k} \frac{1}{|x_j - x_k|^s}, \quad s > 0, \quad E_0(\omega_N) := \sum_{j \neq k} \log \frac{1}{|x_j - x_k|}
\]

is called an optimal \(s \)-energy configuration.
Tammes Problem (1930)
A Dutch botanist that studied modeling of the distribution of the orifices in pollen grain asked the following.

Tammes Problem (Best-Packing)
Place N points on the unit sphere so as to maximize the minimum distance between any pair of points, or, where to situate hostile dictators?
Optimal Configurations in Chemistry

Fullerenes (1985) - (Buckyballs)
Vaporizing graphite, Curl, Kroto, Smalley, Heath, and O’Brian discovered C_{60}
(Chemistry 1996 Nobel prize)

Nanotechnology - Nanowire (R. Smalley)
A giant fullerene molecule few nanometers in diameter, but hundreds of microns (and ultimately meters) in length, with electrical conductivity similar to copper’s, thermal conductivity as high as diamond and tensile strength about 100 times higher than steel.
32 and 122 Electrons and C_{60} and C_{240} Buckyballs
Other "Fullerenes"

Under the lion paw

Montreal biosphere
Computational "Fulerene" - Rob Womersley

1089 Extremal Points on a Sphere
www.maths.unsw.edu.au/~rsw/Sphere
Rob Womersley
UNSW Maths

Sydney VisLab
www.vislab.usyd.edu.au
Visualisation by
Ben Simons

Y-Rotation: 001 degrees

Scaled Cubature Weights
0.65 0.825 1.0 1.175 1.35
Recall: Riesz Optimal Configurations

A configuration \(\omega_N := \{x_1, \ldots, x_N\} \subset S^2 \) that minimizes Riesz \(s \)-energy

\[
E_s(\omega_N) := \sum_{j \neq k} \frac{1}{|x_j - x_k|^s}, \quad s > 0, \quad E_0(\omega_N) := \sum_{j \neq k} \log \frac{1}{|x_j - x_k|}
\]

is called an \textbf{optimal \(s \)-energy configuration}.

- \(s = 0 \), Smale’s problem, logarithmic points (known for \(N = 1 - 6, \ 12 \));
- \(s = 1 \), Thomson Problem (known for \(N = 1 - 6, \ 12 \))
- \(s = -1 \), Fejes-Toth Problem (known for \(N = 1 - 6, \ 12 \))
- \(s \to \infty \), Tammes Problem (known for \(N = 1 - 12, \ 13, \ 14, \ 24 \))
Separation Problem for \mathbb{S}^d

Separation Distance

$$\delta(\omega_N) := \min_{j \neq k} |x_j - x_k|, \quad \omega_N = \{x_1, \ldots, x_N\}$$

Expect: $\delta(\omega_N^{(s)}) \asymp N^{-1/d}$ as $N \to \infty$, where $\omega_N^{(s)}$ optimal for \mathbb{S}^d

Definition

A **sequence** of N-point configurations $\{\omega_N\}_{N=2}^{\infty} \subset \mathbb{S}^d$ is **well-separated** if there exists some $c > 0$ **not** depending on N s.t.

$$\delta(\omega_N) \geq c N^{-1/d}$$

for all N.
Separation Problem for \mathbb{S}^d

<table>
<thead>
<tr>
<th>Condition</th>
<th>Expression</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 2, s = 0$</td>
<td>$\delta(\omega_N^{(0)}) \geq \mathcal{O}(N^{-1/2})$</td>
<td>R-S-Z (1995)</td>
</tr>
<tr>
<td>$0 < s < d - 2$</td>
<td>$\delta(\omega_N^{(s)}) \geq ?$</td>
<td></td>
</tr>
<tr>
<td>$s = d - 1$</td>
<td>$\delta(\omega_N^{(d-1)}) \geq \mathcal{O}(N^{-1/d})$</td>
<td>Dahlberg (1978)</td>
</tr>
<tr>
<td>$d - 1 \leq s < d$</td>
<td>$\delta(\omega_N^{(s)}) \geq \mathcal{O}(N^{-1/d})$</td>
<td>K-S-S (2007)</td>
</tr>
<tr>
<td>$d - 2 \leq s < d$</td>
<td>$\delta(\omega_N^{(s)}) \geq \beta_{s,d} N^{-1/d}$</td>
<td>D-S (2007)</td>
</tr>
<tr>
<td>$s = d$</td>
<td>$\delta(\omega_N^{(d)}) \geq \mathcal{O}((N \log N)^{-1/d})$</td>
<td>K-S (1998)</td>
</tr>
<tr>
<td>$s > d$</td>
<td>$\delta(\omega_N^{(s)}) \geq \mathcal{O}(N^{-1/d})$</td>
<td>K-S (1998)</td>
</tr>
<tr>
<td>$s = \infty$</td>
<td>$\delta(\omega_N^{(\infty)}) \geq \mathcal{O}(N^{-1/d})$</td>
<td>Conway-Sloane</td>
</tr>
</tbody>
</table>

Asymptotic Results (H-vdW (1951), Bo-H-S (2007))
Logarithmic Points on S^2 $(d = 2, s = 0)$

Separation Results for Logarithmic Configurations on S^2

\[\delta(\omega_N^{(0)}) \geq \frac{3}{5}/\sqrt{N} \]
R-S-Z (1995)

\[\delta(\omega_N^{(0)}) \geq \frac{7}{4}/\sqrt{N} \]
Dubickas (1997)

\[\delta(\omega_N^{(0)}) \geq \frac{2}{\sqrt{N - 1}} \]
Dragnev (2002)
Logarithmic Points on S^2 ($d = 2$, $s = 0$)

Separation Results for Logarithmic Configurations on S^2

$$
\begin{align*}
\delta(\omega_N^{(0)}) & \geq (3/5)/\sqrt{N} & \text{R-S-Z (1995)} \\
\delta(\omega_N^{(0)}) & \geq (7/4)/\sqrt{N} & \text{Dubickas (1997)} \\
\delta(\omega_N^{(0)}) & \geq 2/\sqrt{N - 1} & \text{Dragnev (2002)}
\end{align*}
$$

Proof.

- **R-S-Z, Dubickas**: Stereographical projection with South Pole in ω_N.
- **Dragnev**: Stereographical projection with North Pole in ω_N. This creates external field on projections of remaining $N - 1$ points $\{z_k\}$. **All** weighted Fekete points are contained in support of continuous MEP, i.e. $|z_k| \leq \sqrt{N - 2}$, which implies estimate. \square
Separation Problem for \mathbb{S}^d for $d - 2 \leq s < d$

Approach for \mathbb{S}^d

- Fix a point of $\omega_N^{(s)}$ and consider *external field* Q_N it generates on the remaining $n = N - 1$ points.
- Study continuous energy problem for this external field Q_N.
- Discrete energy points for Q_N are *contained* in CEP equilibrium support.

Theorem (D-Saff 2007)

$$\delta(\omega_N^{(s,d)}) \geq \frac{K_{s,d}}{N^{1/d}}, \quad K_{s,d} := \left(\frac{2\beta(d/2, 1/2)}{\beta(d/2, (d - s)/2)}\right)^{1/d},$$

where $\beta(x, y)$ denotes the Beta function. In particular,

$$K_{d-1,d} = 2^{1/d}, \quad K_{s,2} = 2\sqrt{1 - s/2}.$$

Remark: We need Principle of Domination, de la Valleè-Pousin type theorem, and Riesz balayage, hence the restriction on s.

[286x266]Peter Dragnev, IPFW
Let Q be an external field. Find Q-optimal configuration of n points on S^d, that solve

$$\min \left\{ \sum_{j \neq k}^{n} \left[\frac{1}{|x_j - x_k|^s} + Q(x_j) + Q(x_k) \right] : x_k \in S^d \right\}$$

2007 Separation: $q = 1/(N - 2)$, $R = 1$, $n = N - 1$.

$Q(x) = \frac{q}{|x - Rp|^s}$
What do **Q-Fekete points** look like?
Example (S^2, $s = 1$, $q = 1/3$ and $q = 1$, $n = 4$)
Discrete MEP on \mathbb{S}^d for $d - 2 \leq s < d$

Let Q be an **external field**. Find Q-optimal configuration of n points on \mathbb{S}^d, that solve

$$
\min \left\{ \sum_{j \neq k}^{n} \left[\frac{1}{|x_j - x_k|^s} + Q(x_j) + Q(x_k) \right] : x_k \in \mathbb{S}^d \right\}
$$

2007 Separation: $q = 1/(N - 2)$, $R = 1$, $n = N - 1$.

Key idea:
Discrete MEP on \mathbb{S}^d for $d - 2 \leq s < d$

Q-optimal points

Let Q be an external field. Find Q-optimal configuration of n points on \mathbb{S}^d, that solve

$$
\min \left\{ \sum_{j \neq k}^{n} \left[\frac{1}{|x_j - x_k|^s} + Q(x_j) + Q(x_k) \right] : x_k \in \mathbb{S}^d \right\}
$$

2007 Separation: $q = 1/(N - 2)$, $R = 1$, $n = N - 1$.

Key idea:

Theorem

*Q-optimal points are contained in $\text{supp}(\mu_Q)$.***
Example (\mathbb{S}^2, $s = 0$, $Q = -\log |x - Rn|$, $20 > R > 1.1$, $n = 1000$)
External field Continuous MEP on \mathbb{S}^d for $d-2 \leq s < d$

$K \subset \mathbb{S}^d$ compact; $\mathcal{M}(K)$ class of positive unit Borel measures μ supported on K

$$U^\mu_s(x) := \int |x - y|^{-s} \, d\mu(y) \quad \mathcal{I}_s[\mu] := \int \int |x - y|^{-s} \, d\mu(x) \, d\mu(y)$$

Riesz s-potential of μ \hspace{1cm} Riesz s-energy of μ

$W_s(K) := \inf \{ \mathcal{I}_s[\mu] : \mu \in \mathcal{M}(K) \}$

Riesz s-energy of K

Extremal measure

Given an external field Q on K, there exists unique extremal measure μ_Q that minimizes the weighted energy

$$\mathcal{I}_s[\mu] + 2 \int Q \, d\mu, \quad \mu \in \mathcal{M}(K),$$

characterized by $U^\mu_s(x) + Q(x) \geq C$ on \mathbb{S}^d with "=" on supp(μ_Q).
Physicist’s Problem (Signed Equilibrium)

Given compact $K \subset \mathbb{S}^d$, Q external field on K, find a signed measure η_Q s.t.

$$U^m_s(x) + Q(x) = \text{const.} \quad \text{everywhere on } K$$

$$\eta_Q(K) = 1$$

Definition

$\eta_Q = \eta_{Q,K}$ is called **signed equilibrium on** K **associated with** Q.

Proposition

If η_Q exists, then it is unique.

Theorem

Let $\eta_{Q,K} = \eta_{Q,K}^+ - \eta_{Q,K}^-$. Then $\text{supp}(\mu_{Q,K}) \subseteq \text{supp}(\eta_{Q,K}^+)$
Example (Brauchart-Saff-D., 2009)

\[K = S^d, \quad Q_a(x) = q/|x - a|^s, \quad R = |a| \geq 1 \]

\[\eta_{Q_a} = \eta_{Q_a}^+ - \eta_{Q_a}^- \]

Let \(\Sigma_t \) be spherical cap centered at South Pole of height \(-1 \leq t \leq 1\)

\[\text{supp}(\eta_{Q_a}^+) = \Sigma_t(Q_a), \quad \text{supp}(\eta_{Q_a}^-) = S^d \setminus \Sigma_t(Q_a). \]

Remark

If \(\eta_{Q_a} \geq 0 \), then \(\mu_{Q_a} = \eta_{Q_a} \). If not, then \(\text{supp}(\mu_{Q_a}) \subseteq \text{supp}(\eta_{Q_a}^+) \).
Finding μ_Q when $\text{supp}(\mu_Q) = S^d$

Gonchar's Problem for S^d

Let $q = 1$, $s = d - 1$ (Newton potential). Find $R_0 > 0$ s.t. for $Q_a(x) = |x - a|^{1-d}$, $a = Rp$

$$\text{supp}(\mu_{Q_a}) \begin{cases} = S^d & \text{if } R \geq R_0, \\ \subset S^d & \text{if } R < R_0. \end{cases}$$

Proposition

For $s = d - 1$,

$$d \eta_{Q_a}(x) = \left[1 + \frac{1}{R^{d-1}} - \frac{R^2 - 1}{|x - a|^{d+1}}\right] d \sigma_d(x)$$
Finding μ_Q when $\text{supp}(\mu_Q) = S^d$

Gonchar’s Problem for S^d

Let $q = 1$, $s = d - 1$ (Newton potential). Find $R_0 > 0$ s.t. for $Q_a(x) = |x - a|^{1-d}$, $a = Rp$

$$\text{supp}(\mu_{Q_a}) \begin{cases} = S^d & \text{if } R \geq R_0, \\ \subsetneq S^d & \text{if } R < R_0. \end{cases}$$

Proposition

For $s = d - 1$,

$$d \eta_{Q_a}(x) = \left[1 + \frac{1}{R^{d-1}} - \frac{R^2 - 1}{|x - a|^{d+1}} \right] d \sigma_d(x)$$

If $d = 2$, then $R_0 - 1 = \frac{1 + \sqrt{5}}{2}$. When $d = 4$, $R_0 - 1 = \text{Plastic number}$ from architecture (see Padovan sequence $P_{n+3} = P_{n+1} + P_n$).
Finding μ_Q when $\text{supp}(\mu_Q) \subsetneq \mathbb{S}^d$; B-D-S (2009)

Definition (\mathcal{F}_s-Mhaskar-Saff functional for general Q)

$$\mathcal{F}_s(K) := W_s(K) + \int Q \, d\mu_K, \quad K \subset \mathbb{S}^d \text{ compact.}$$

Theorem

If $d - 2 \leq s < d$ with $s > 0$, then \mathcal{F}_s is minimized for $S_Q := \text{supp}(\mu_Q)$.

Proposition (Connection to signed equilibrium)

If $d - 2 < s < d$ with $s > 0$, $Q : K \rightarrow \mathbb{R}$ continuous and $W_s(K) < \infty$, then $U_{s}^{n_Q,\kappa} + Q \equiv \mathcal{F}_s(K)$ on K.

Proof.

By definition $U_{s}^{n_Q,\kappa}(x) + Q(x) = C$ on K. ∎
Finding μ_Q when $\text{supp}(\mu_Q) \subsetneq \mathbb{S}^d$; B-D-S (2009)

Definition (\(\mathcal{F}_s\)-Mhaskar-Saff functional for general \(Q\))

\[
\mathcal{F}_s(K) := W_s(K) + \int Q \, d\mu_K, \quad K \subset \mathbb{S}^d \text{ compact.}
\]

Theorem

If $d - 2 < s < d$ with $s > 0$, then \mathcal{F}_s is minimized for $S_Q := \text{supp}(\mu_Q)$.

Proposition (Connection to signed equilibrium)

If $d - 2 < s < d$ with $s > 0$, $Q : K \to \mathbb{R}$ continuous and $W_s(K) < \infty$, then $U^{\eta_Q,K}_s + Q \equiv \mathcal{F}_s(K)$ on K.

Proof.

\[
\int U^{\eta_Q,K}_s(x) \, d\mu_K(x) + \int Q(x) \, d\mu_K(x) = \int C \, d\mu_K(x)
\]
Definition \((\mathcal{F}_s\text{-Mhaskar-Saff functional for general } Q)\)

\[
\mathcal{F}_s(K) := W_s(K) + \int Q \, d\mu_K, \quad K \subset \mathbb{S}^d \text{ compact.}
\]

Theorem

If \(d - 2 \leq s < d\) with \(s > 0\), then \(\mathcal{F}_s\) is minimized for \(S_Q := \text{supp}(\mu_Q)\).

Proposition (Connection to signed equilibrium)

If \(d - 2 < s < d\) with \(s > 0\), \(Q : K \rightarrow \mathbb{R}\) continuous and \(W_s(K) < \infty\), then \(U^\eta_{\mu, K} + Q \equiv \mathcal{F}_s(K)\) on \(K\).

Proof.

\[
\int U^{\mu_K}_s(x) \, d\eta_{Q,K}(x) + \int Q(x) \, d\mu_K(x) = C \int d\mu_K(x)
\]
Finding \(\mu_Q \) when \(\text{supp}(\mu_Q) \subsetneq S^d \); B-D-S (2009)

Definition (\(\mathcal{F}_s \)-Mhaskar-Saff functional for general \(Q \))

\[
\mathcal{F}_s(K) := W_s(K) + \int Q \, d\mu_K, \quad K \subset S^d \text{ compact.}
\]

Theorem

If \(d - 2 \leq s < d \) with \(s > 0 \), then \(\mathcal{F}_s \) is minimized for \(S_Q := \text{supp}(\mu_Q) \).

Proposition (Connection to signed equilibrium)

If \(d - 2 < s < d \) with \(s > 0 \), \(Q : K \to \mathbb{R} \) continuous and \(W_s(K) < \infty \), then \(U_{s,\eta}^{\eta_Q, K} + Q \equiv \mathcal{F}_s(K) \) on \(K \).

Proof.

\[
W_s(K) \int d\eta_{Q,K}(\mathbf{x}) + \int Q(\mathbf{x}) \, d\mu_K(\mathbf{x}) = C \int d\mu_K(\mathbf{x})
\]
Finding μ_Q when $\text{supp}(\mu_Q) \subsetneq S^d$; B-D-S (2009)

Definition (\mathcal{F}_s-Mhaskar-Saff functional for general Q)

$$\mathcal{F}_s(K) := W_s(K) + \int Q \, d\mu_K, \quad K \subset S^d \text{ compact.}$$

Theorem

If $d - 2 \leq s < d$ with $s > 0$, then \mathcal{F}_s is minimized for $S_Q := \text{supp}(\mu_Q)$.

Proposition (Connection to signed equilibrium)

If $d - 2 < s < d$ with $s > 0$, $Q : K \to \mathbb{R}$ continuous and $W_s(K) < \infty$, then $U^{\eta_Q,K}_s + Q \equiv \mathcal{F}_s(K)$ on K.

Proof.

$$\mathcal{F}_s(K) = W_s(K) + \int Q \, d\mu_K = C$$
Let \(d - 2 \leq s < d, s > 0 \). If \(Q \) is axially symmetric, i.e. \(Q(z) = f(\xi) \), where \(\xi = \text{height of } z \), with \(f \) convex and increasing, then

\[
\text{supp}(\mu_Q) = \Sigma_{t_0} \text{ for some } t_0.
\]

Note: \(Q_a(z) = q/|z - a|^s = f(\xi) \) on \(S^d \) for \(s > 0 \)

Consequently

\[
\text{supp}(\mu_{Q_a}) = \Sigma_{t_0} \text{ for some } t_0.
\]

Theorem (for \(Q_a \))

If \(d - 2 \leq s < d, s > 0 \), and \(a = Rp \), then \(\mathcal{F}_s \) is minimized over \(\Sigma_t \)’s when \(t = t_0 \) is the unique solution of

\[
\frac{W_s(S^d)}{\|\nu_t\|} \left(1 + q \|\epsilon_t\| \right) = \frac{q(R + 1)^{d-s}}{(R^2 - 2Rt + 1)^{d/2}},
\]

where \(\epsilon_t = \text{Bal}_s(\delta_a, \Sigma_t), \) and \(\nu_t = \text{Bal}_s(\sigma_d, \Sigma_t) \).

or \(t_0 = 1 \) when such a solution does not exist.
The Signed Equilibrium on Σ_t

Theorem

Let $d - 2 < s < d$. $Q_a(x) = q/|x - a|^s$. Signed equilibrium on Σ_t is

$$\eta_t \equiv \eta_{Q_a, \Sigma_t} = \frac{1 + q\|\epsilon_t\|}{\|\nu_t\|}\nu_t - q\epsilon_t,$$

$$\epsilon_t = \text{Bal}_s(\delta_a, \Sigma_t), \quad \nu_t = \text{Bal}_s(\sigma_d, \Sigma_t).$$

Moreover,

$$d\eta_t(x) = \eta'_t(u) d\sigma_d(x), \quad x = (\sqrt{1 - u^2}\bar{x}, u) \in \Sigma_t, \quad \bar{x} \in S^{d-1}.$$

The weighted s-potential is

$$U^m_s(z) + Q_a(z) = F_s(\Sigma_t) \quad \text{on} \quad \Sigma_t,$$

$$U^m_s(z) + Q_a(z) = F_s(\Sigma_t) + [\cdots] \quad \text{on} \quad S^d \setminus \Sigma_t.$$
Compare with $s = 0$, $d = 2$ case

$t > t_0$,
\[
U_s^{nt}(z) + Q_a(z) \geq F_s(\Sigma_t) \quad \text{on } S^d \setminus \Sigma_t,
\]
\[
U_s^{nt}(z) + Q_a(z) = F_s(\Sigma_t) \quad \text{on } \Sigma_t,
\]
\[
\eta'_t \geq 0 \quad \text{on } \Sigma_t.
\]

$t = t_0$,
\[
U_s^{nt}(z) + Q_a(z) \geq F_s(\Sigma_t) \quad \text{on } S^d \setminus \Sigma_t,
\]
\[
U_s^{nt}(z) + Q_a(z) = F_s(\Sigma_t) \quad \text{on } \Sigma_t,
\]
\[
\eta'_t \not\geq 0 \quad \text{on } \Sigma_t.
\]

$t < t_0$,
\[
U_s^{nt}(z) + Q_a(z) \not\leq F_s(\Sigma_t) \quad \text{on } S^d \setminus \Sigma_t,
\]
\[
U_s^{nt}(z) + Q_a(z) = F_s(\Sigma_t) \quad \text{on } \Sigma_t,
\]
\[
\eta'_t \geq 0 \quad \text{on } \Sigma_t.
\]
Balayage of a measure is superposition of balayages of Dirac-delta’s

Definition

Q **positive-axis supported**, if

\[Q(x) = \int |x - Rp|^{-s} \, d\lambda(R), \quad x \in S^d, \]

for some finite pos. meas. \(\lambda \) supp. on a compact subset of \((0, \infty)\).

Theorem (Signed equilibrium on \(\Sigma_t \) for positive-axis supported \(Q \))

Let \(Q \) be as above with \(\text{supp}(\lambda) \subset [1, \infty) \) and \(d - 2 < s < d \). Then

\[\tilde{\eta}_t = \frac{1 + \|\tilde{\epsilon}_t\|}{\|\nu_t\|} \nu_t - \tilde{\epsilon}_t, \]

where

\[\nu_t = \text{Bal}_s(\sigma_d, \Sigma_t) \]

\[\tilde{\epsilon}_t := \text{Bal}_s(\lambda, \Sigma_t) = \int \text{Bal}_s(\delta_Rp, \Sigma_t) \, d\lambda(R) \]
Set \(Q(x) := q/|x - b|^s, |b| > 1 \), let \(\{x_1, x_2, \ldots, x_N\} \) be a \(Q \)-Fekete point set. If \(x_N \) is the fixed, then \(\{x_1, x_2, \ldots, x_{N-1}\} \) is a \(\tilde{Q} \)-Fekete set with \(\tilde{Q}(x) = Q(x) + |x - x_N|^{-s}/(N - 2) \).

Theorem

- If \(d - 2 < s < d \), then all \(\tilde{Q} \)-Fekete points are in \(\text{supp}(\mu_{\tilde{Q}}) \).
- In addition, \(\text{supp}(\mu_{\tilde{Q}}) \subseteq \text{supp}(\eta_{\tilde{Q},K}^+) \) for any compact \(\text{supp}(\mu_{\tilde{Q}}) \subseteq K \subseteq S^d \).

\[
\delta(\omega_{Q,N}^{(s)}) \geq \left(\frac{2B(d/2, 1/2)}{(1 + q)B(d/2, (d - s)/2)} \right)^{1/d} N^{-1/d}
\]
Let \(Q(x) := \sum q_i \log \frac{1}{|x - b_i|} \), \(b_i \in S^2 \). (If \(d > 2 \), then \(s = d - 2 \))

Theorem

For small enough \(q_i \), the support \(\text{supp}(\mu_Q) \) is found explicitly by removing suitable nonintersecting spherical caps around \(b_i \) and the extremal measure is the normalized surface area measure for \(\text{supp}(\mu_Q) \).
THANK YOU!
Proof.

Suppose η_1 and η_2 are two signed s-equilibria on K. Then

$$U^\eta_1(x) + Q(x) = F_1, \quad U^\eta_2(x) + Q(x) = F_2 \quad \text{for all } x \in K.$$

Subtracting the two equations and integrating with respect to $\eta_1 - \eta_2$ we obtain

$$\mathcal{I}_s(\eta_1 - \eta_2) = \int [U^\eta_1(x) - U^\eta_2(x)] \, d(\eta_1 - \eta_2)(x) = 0.$$

We used that $\int (F_2 - F_1) \, d(\eta_1 - \eta_2)(x) = 0$, since $(\eta_1 - \eta_2)(K) = 0$. Therefore $\mathcal{I}_s(\eta) \geq 0$ for any signed measure η with equality iff $\eta \equiv 0$.

Therefore $\eta_1 = \eta_2$. \qed