Mathematical Practice and Human Cognition

Bernd Buldt

Indiana University - Purdue University Fort Wayne, buldtb@ipfw.edu

Follow this and additional works at: http://opus.ipfw.edu/philos_facpres

Part of the Cognitive Psychology Commons, Logic and Foundations Commons, and the Logic and Foundations of Mathematics Commons

Opus Citation

http://opus.ipfw.edu/philos_facpres/150

This Presentation is brought to you for free and open access by the Department of Philosophy at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in Philosophy Faculty Presentations by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
Mathematical Practice and Human Cognition
Remarks on Quinn’s “Science of Mathematics”

Bernd Buldt

Department of Philosophy
Indiana U - Purdue U Fort Wayne (IPFW)
Fort Wayne, IN, USA; e-mail: buldtb@ipfw.edu

Workshop “From Basic Cognition to Mathematical Practice”
Seville, IMUS – September 19–21, 2016
Overview

- Introduction: Remark on mathematical practice
- Frank Quinn’s Contributions (to a Science of Contemporary Mathematics)

Mathematical Concepts
- A historical example
- Mathematical practice: Defining concept (FQ)
- Mathematical practice: Acquisition of concepts (FQ)
- Mathematical practice: Corroboration by math ed (cogn. sci.)
- *Mathematical practice: convergence with phenomenology
Introduction: Remark on mathematical practice (MP)

Three meanings of MP

- MP in Math Ed and PME

 - Deliberate inclusion of insights from various disciplines
Introduction: Remark on mathematical practice (MP)

MP as a culture

▶ “that complex whole that includes knowledge, belief, art, morals, law, custom and any other capabilities and habits acquired by [mathematicians] as members of [their trade].”
Edward Tylor, *Primitive Culture* (1871), vol. 1, p. 1
Frank Quinn: Relevant Publications

- 1992: “Theoretical Mathematics” (BAMS; jointly w/ A. Jaffe)
- 2012: “Revolutions in Mathematics?” (NAMS)

- 2011: Contributions to a Science of Mathematics

Quinn’s three periods

- I. ??–1600: “qualitative and philosophical”
- II. 1600–late 19th c: “quantitative and mathematical”
 scientific needs; elite practioner syndrome
- III. late 19th c through Hilbert’s Göttingen–??
 ontologically autonomous, methodologically unique
Quinn’s Third Period: Rigor

- **Traumatic transition**
 “the changes were forced by [the] increasingly difficulty of the mathematics and [the] ambition of the profession.”

- **Methodology**
 Rigorous definitions along with “genuinely error-displaying methods” secure the “complete reliability” of all mathematical conclusions.

- “The slavish devotion of mathematicians to rigorous methodology is required by the subject […] Rigor plays the same role in mathematics that agreement with the physical world plays in other sciences. Relaxing rigor is like ignoring data.”
Concepts: Continuity as an example

- Period I. Philosophy and application: Leibniz’ principle of continuity

- Period II. Quantitative and mathematical: ϵ-δ approach
 Cauchy, building on d’Alembert, Euler, Lagrange, followed by
 Bolzano, Dedekind, Weierstrass

- Period III. Purely mathematical: topological definition
 Maurice Fréchet, Frigyes Reisz (not Marcel), Felix Hausdorff,
 Kazimierz Kuratowksi, among others
Concepts: Continuity a a topological notion

Definition. A topological space $\langle X, T \rangle$ is a set X together with a topology T, i.e., a family of open subsets of X, such that

1. \emptyset and X are both open,
2. arbitrary unions of open sets are open,
3. finite intersection of open sets are open.

Definition. A function $f : S \to T$ between two topological spaces is continuous iff the pre-image $f^{-1}(Q)$ of every open set $Q \subset T$ is an open set $P \subset S$.
Concepts: Quinn’s question

- Increase in rigor and loss of experiential or intuitive contents result in a concentration on the mathematical substance.

- Definitions are *not* simply a codification of an intuitive understanding” but “were developed and refined over long periods and with great effort,” and were, in fact, “frequently a community effort.”

- Quinn’s question: How do human agents acquire such concepts?
Concepts: Quinn’s answer

1. Sever as many ties to ordinary language as possible and limit ordinary language explanations to an absolute minimum

2. Introduce axiomatic definitions and bundle them up with a sufficient number of examples, lemmata, propositions, etc. into small cognitive packages

3. Have students practice hard with one new cognitive package at a time

4. Lather, rinse, repeat.
Concepts: How did it evolve and into what?

- Natural selection: those who did adopt another approach could no longer compete and eventually sank into oblivion

- Outcomes:
 - Core mathematics (vs mathematical sciences)
 - Empowering rank-and-file faculty (vs elite-practioner)
 - Mathematical altruism: faculty develop habits that support and nurse such practices of conceptual and methodic rigor
Quinn: Is he right?

- Soft empirical evidence
 - Quinn’s own expert testimony
 - Graduate level textbooks

- Hard empirical evidence?
 - Well, 2nd part of the talk ;-)
Digression: PoMP & Quinn is right?

- Traditional PoM reduced cognitive labor to deductive proof
 - Legacy of logicism

- A PoMP may realize that such a reduction is wrong
 - Philosophy becomes richer and much more complex
Evidence from CS, MathEd, PME: Caution

- Caution re neuroimaging: It’s too early to tell

- Caution re MathEd/PME
 - Undue influence of P&P
 - No focus on advanced mathematics
 - Lack of empirical reliability: sample sizes, reproducibility
Supporting evidence from MathEd/PME (and CS)

Quinn’s No 1: Sever ties to ordinary language

- From lexical decision task to priming: fact or fiction? (eg, Kahneman 2012 letter)
- Embodied knowledge and met-befores (eg, Tall 2008, 2013)
- Generic extension principle & epistemic obstacles (eg, Tall 1986; Cornu 1982, Sierpińska 1985ab)
Supporting evidence from MathEd/PME (and CS)

Quinn’s No 2: Cognitive packaging: definitions plus exercises

- Adding properties (ie, meaning) and fluidity (ie, mastery) (eg, Dreyfus 1991)
- Concept definition vs concept image (eg, Vinner 1983, 1991)
- CS: Package size matters (eg, Anderson&Lee&Fincham 2014); inhibition control (eg, Houdé et al., op cit.)
Supporting evidence from MathEd/PME (and CS)

Quinn’s No 3: Practice hard!

1. Automation: load issues (eg, Thurston 1990: compressibility; Lee&Ng&Ng 2009: word problems)

2. Mathematical “Habits of Mind”
 (eg, Selden&Lim 2010; Wilkerson-Jerde&Wilensky 2009, 2011: novices vs experts)
Qualifying evidence

- Contradicting evidence
 - Different cultures: Mathematicians responding to Jaffe-Quinn
 - Tall 2013: Introduction

- Enriching evidence
 - Studies that lend support for Quinn’s thesis also provide a much richer, higher-resolution picture of the cognitive processes involved
Enriching perspectives from MathEd/PME (and CS)

Quinn’s No 1: Sever ties to ordinary language

- Continuity and motivation:
 conceptual-embodied – proceptual-symbolic – axiomatic formal (eg, Tall 2008, 2013)

- Continuity and generalization vs abstraction:
 \mathbb{R}^n vs vector space
Enriching perspectives from MathEd/PME (and CS)

Quinn’s No 2: Cognitive packaging: definitions plus exercises

- Deduction vs construction: building properties of abstract objects

- Concept definition vs concept image: focus on generic or otherwise disrupting images
Enriching perspectives from MathEd/PME (and CS)

Quinn’s No 3: Practice hard!

- Fluidity among images
 (eg, Dreyfus 1991; Tall 2013)

- Reification: point-wise vs. object-valued operators – focus enhancing (eg, Harel & Kaput 1991)
Some examples)

1. Concept definition vs concept image (generic images)
 - Fluidity among images
 (e.g., Dreyfus 1991; Tall 2013)
 - Reification: point-wise vs. object-valued operators – focus enhancing (e.g., Harel & Kaput 1991)
Some examples

1. Conceptual entities (reification)

- Fluidity among images
 (eg, Dreyfus 1991; Tall 2013)

- Reification: point-wise vs. object-valued operators – focus enhancing (eg, Harel & Kaput 1991)
Summary

1. While empirical findings lend support to Quinn’s claims about the adequacy of the mathematical practice as he describes it (as a three-step program), they also suggest that a more nuanced approach is advisable.

2. Empirical findings strongly suggest that MP includes a plethora of cognitive processes that go beyond deductive proof; therefore,

 PoM is dead, long live PoMP!
Thank You!