Analysis of an Induction Generator for a Wind Turbine

Andrew Brown

Follow this and additional works at: http://opus.ipfw.edu/etcs_seniorproj

Part of the Computer Sciences Commons, and the Engineering Commons

Opus Citation

This Senior Design Project is brought to you for free and open access by the School of Engineering, Technology and Computer Science Design Projects at Opus: Research & Creativity at IPFW. It has been accepted for inclusion in Computer and Electrical Engineering Technology & Information Systems and Technology Senior Design Projects by an authorized administrator of Opus: Research & Creativity at IPFW. For more information, please contact admin@lib.ipfw.edu.
Analysis of an Induction Generator for a Wind Turbine

Final Project Report
April 25, 2011

Andrew Brown

ENGW 421 Technical Writing Project

Submitted to:
Iskandar Hack, Professor of ECET 491 Senior Design II

Department of Electrical and Computer Engineering Technology
College of Engineering, Technology, and Computer Science
Indiana University-Purdue University Fort Wayne, Indiana
Abstract

This document is an analysis of the induction generator and how it is used in a wind turbine. There is an obvious need for new sources of energy. The squirrel-cage induction generator (SCIG) is often used in wind turbines because of its low cost and little need for maintenance. With my research I have shown why the SCIG is used so often. It's simple and rugged design make it ideal for wind turbines, where it can be very difficult to perform even routine maintenance. I have shown how easy it can be to turn an induction motor into a working induction generator. With the tests I have performed I was able to show the performance of an induction machine. I also explained how to enhance the performance of an induction generator. The induction machine draws reactive power from its grid connection affecting the power quality. This reactive power was easily provided with a bank of capacitors connected to the generators terminals. With my research and data I hope that this document will be able to show useful he squirrel-cage induction generator can be.

List of Illustrations

Figure 2-1 “Induction Machine”
Figure 2-2 “Stator Phase Sequence”
Figure 3-1 Induction Generator Circuit Diagram
Figure 4-1 Induction Machine Circuit Diagram No Load
Figure 4-1 Induction Machine No Load Active Power Output Plot
Figure 4-2 Induction Machine No Load Power Factor Plot
Figure 4-3 Induction Machine Circuit Diagram Inductive Load
Figure 4-4 Induction Machine Active Power Output Inductive Load Plot
Figure 4-5 Induction Machine Inductive Load Power Factor Plot
Figure 4-6 Induction Machine Circuit Diagram Capacitive Load
Figure 4-7 Induction Machine Active Power Output Capacitive Load Plot
Figure 4-8 Induction Machine Capacitive Load Power Factor Plot
Figure 4-9 Induction Machine Circuit Diagram Inductive and Capacitive Load
Figure 4-10 Induction Machine Active Power Output Inductive and Capacitive Load Plot
Figure 4-11 Induction Machine Inductive and Capacitive Load Power Factor Plot
Figure 5-1 Microsoft Project Tasks Schedule
List of Tables

Table 4-1 No Load Induction Machine Output Power Measurements
Table 4-2 Inductive Load Induction Machine Output Power Measurements
Table 4-3 Capacitive Load Induction Machine Output Power Measurements
Table 4-4 Inductive and Capacitive Load Induction Machine Output Power Measurements
Table of Contents

Chapter 1. Introduction ... 2
 1.1 Problem Statement .. 2
 1.2 Solution Statement .. 2
 1.3 System Requirements .. 2
 1.4 Resources .. 3
 1.5 Primary Purpose .. 3
 1.6 Overview ... 3

Chapter 3. Hardware Design... 7

Chapter 4. Unit Testing and System Integration ... 8
 4.1 No Load Test ... 8
 4.2 Inductive Load Test .. 11
 4.3 Capacitive Load Test .. 14
 4.4 Inductive and Capacitive Load Test .. 17

Chapter 5. Project Management .. 20
 5.1 Schedule and Time Management .. 20
 5.2 Resource and Cost Management ... 20
 5.3 Lessons Learned .. 21

Chapter 6. Conclusion ... 21

References ... 22