A PLC-Based Simulated Electrical Load Management System for Smart-meter Application

Jon M. Kline
Indiana University - Purdue University Fort Wayne

Derek Boissy
Indiana University - Purdue University Fort Wayne

Follow this and additional works at: http://opus.ipfw.edu/etcs_seniorproj

Part of the [Computer Sciences Commons](http://opus.ipfw.edu/etcs_seniorproj) and the [Engineering Commons](http://opus.ipfw.edu/etcs_seniorproj)

Opus Citation

Jon M. Kline and Derek Boissy (2012). A PLC-Based Simulated Electrical Load Management System for Smart-meter Application.
http://opus.ipfw.edu/etcs_seniorproj/945
ECET-CPET 491 Sr. Design Project

A PLC-Based Simulated Electrical Load Management System for Smart-meter Application

Final Project Report

Jon M. Kline & Derek Boissy
12/07/2012

Project Faculty Advisor:
Prof. Lin

Submitted to:
Paul I. Lin, Professor of ECET 491 Senior Design II

Department of Electrical and Computer Engineering Technology
College of Engineering, Technology, and Computer Science
Indiana University – Purdue University Fort Wayne, Indiana
Abstract

This senior design project focuses on the issue of electrical loading and the management of the loads to reduce system stress and fatigue as seen by the electrical utility. When any circuit is overloaded due to demand, excessive heating occurs and damage can be the result if a significant amount of overloading occurs for a prolonged time. Damage is related to the amount of overload, and the amount of time the overload is applied.

Our projects idea is to manage the behind the scenes loads that when combined create overload conditions. Items that are heavy load appliances are the water heaters, air conditioners, washer and dryers, and dishwashers found in many homes. When compared to other energy shifting programs offered by the utilities, this project is much better because this project takes the consumers input out of the system and automates the process. For example, I&M offers a rebate program called “Smart Shift” in which the consumer “Shifts” their consumption habits to take advantage of reduced electric rates. Consumers willing to be involved in the process can take advantage of such programs. The main difference with this project is that it allows people to live their lives like they normally would; the project levels out the peak demand periods automatically.

Keywords

- Electrical Load
- Energy
- Consumption
- Shifting
- Air Conditioning
- Heating
- Management
- PLC
- Ladder Logic
- Metering
- Electrical Panel
- Circuit Breakers
- Relay
- Current
- Voltage
- Current Transducer
- Latching
- Scaling
- Greater Than Function
Table of Contents

Executive Summary

Chapter 1 - Introduction

1.1 Introduction

1.2 Problem Topic

1.3 Background

1.4 Criteria

1.5 Qualifications

1.6 Overview

1.7 Solution Statement

Chapter 2 - Research & System Design Overview

2.1 Feasibility

2.2 Design Process

2.3 Legal Aspects

2.4 System Scope

2.5 Estimating Energy Consumption

2.5.1 Typical Wattages of Various Appliances

2.5.2 Furnace

2.5.3 Hot Water Heater

2.5.4 Clothes dryer, Dish washer, & Coffee Maker

2.5.5 Constant Load
A PLC Based Simulated Electrical Load Management System

2.6 How it Works ... 15

2.6.1 Hot Water Heater: On .. 16

2.6.2 Furnace: On ... 17

2.6.3 Dish Washer: On .. 18

Chapter 3 – Software Design ... 20

3.1 Software Architecture ... 20

3.2 Programming Language .. 20

3.3 Main Components .. 20

Chapter 4 – Unit Testing the ELMS (Electrical Load Management System) & Integration .. 21

4.1 Software testing and validation 21

4.2 Hardware testing and validation 25

4.3 Testing of the Current Transformer 26

4.4 Testing of the SPDT Relays using the Programmable Logic Controller (PLC) 29

4.5 System Integration, Testing, and Validation 29

Chapter 5 – Project Management 30

5.1 Schedule and Time Management 30

5.2 Resource and Cost Management 34

5.3 Risk Management .. 34

5.4 Project Procurement .. 36

Chapter 6 – Conclusion of Semester 39

6.1 What we learned ... 39
6.2 Special Thanks ...39

References ..41

Appendix A ..43

Appendix B ..44

Appendix C ..45