Document Type

Article

Publication Date

8-2017

Publication Source

Ecology and Evolution

Volume

7

Issue

16

Inclusive pages

6606-6613

DOI

10.1002/ece3.3193

Publisher

John Wiley

ISBN/ISSN

20457758

Peer Reviewed

yes

Abstract

Male animals should preferentially allocate their time to performing activities that promote enhancing reproductive opportunity, but the need to acquire resources for growth and survival may compete with those behaviors in the short term. Thus, behaviors which require differing movement patterns such as ambushing prey and actively searching for mates can be mutually exclusive. Consequently, males that succeed at foraging could invest greater time and energy into mate searching. We radio-tracked sixteen male massasauga rattlesnakes (Sistrurus catenatus) and supplemented the diets of half the snakes with mice across an active season. We tested the predictions that reduced foraging needs would allow fed snakes to move (i.e., mate search) more, but that they would consequently be stationary to thermoregulate less, than unfed controls. Contrary to our first prediction, we found no evidence that fed snakes altered their mate searching behavior compared to controls. However, we found controls maintained higher body temperatures than fed snakes during the breeding season, perhaps because fed snakes spent less time in exposed ambush sites. Fed snakes had higher body condition scores than controls when the breeding season ended. Our results suggest the potential costs incurred by devoting time to stationary foraging may be outweighed by the drive to increase mating opportunities. Such instances may be especially valuable for massasaugas and other temperate reptiles that can remain inactive for upwards of half their lives or longer in some cases, and for female rattlesnakes that generally exhibit biennial or more protracted reproductive cycles.

Keywords

body condition, food supplementation, mate searching, resource selection, Sistrurus catenatus, thermoregulation

Disciplines

Biology

Included in

Biology Commons

Share

COinS