Permanent Magnet Generator

Jacob Foxx
Indiana University - Purdue University Fort Wayne

Ty Bienz
Indiana University - Purdue University Fort Wayne

Follow this and additional works at: http://opus.ipfw.edu/etcs_seniorproj

Opus Citation
http://opus.ipfw.edu/etcs_seniorproj/970
Permanent Magnet Generator

Final Project Report
December 2, 2015
Jacob Foxx and Ty Bienz

Project Advisor:
Dr. Owonowo Momoh

Submitted to:
Paul I. Lin, Professor of ECET 491 Senior Design II

Department of Electrical and Computer Engineering Technology
College of Engineering, Technology, and Computer Science
Indiana University-Purdue University Fort Wayne, Indiana
Abstract
This report illustrates the design process, assembly, and testing phases of the prototype for the permanent magnet generator project. The generator can be built at home or in a garage. The design of the prototype is to use two rotors and one stator. The rotors are positioned on either side of the stator attracting one another. The stator consists of three phases while each phase contains three coil. The output of the generator is be three phase AC. Errors were encountered throughout the design and during testing. The prototype is in working order with most errors addressed. The testing has been done in both rectified and unrectified values.

Keywords: AC, Three-phase, 3 phase, alternator, electro-shock therapy, power generator, generator, renewable, renewable resources, DIY, Home inventor, tinkerer, wind turbine, turbine, hydropower, neodymium magnets
Table of Contents

Abstract .. ii

List of Illustrations ... v

List of Tables .. vii

List of Equations .. vii

Executive Summary ... 1

Chapter 1. Introduction ... 2

1.1 Background: ... 2

1.2 Criteria: ... 2

1.3 Methodology: .. 2

1.4 Primary Purpose: ... 3

1.5 Overview: .. 4

CHAPTER 2. SYSTEM DESIGN OVERVIEW AND RESEARCH 5

2.1 Feasibility: .. 5

2.2 Design Process: ... 5

2.3 Legal Aspects ... 7

2.4 System Scope: ... 8

CHAPTER 3. HARDWARE DESIGN .. 9

3.1 Circuit Design: .. 9
CHAPTER 6. CONCLUSION

References

List of Illustrations

Figure 1 - OV1

Figure 2 - Flux Path in Generator

Figure 3 - Functional Block Diagram

Figure 4 - Generator Coil Layout

Figure 5 - Multisim Rectifier Circuit

Figure 6 - Unrectified Output of Generator

Figure 7 - Rectified Output of Generator

Figure 8 - MATLAB graph of Induced Voltage and frequency at Various RPM

Figure 9 - Coil Form

Figure 10 - Coil Progression

Figure 11 - Coil Template

Figure 12 - Magnet Template

Figure 13 - Coils on Template

Figure 14 - Hole to be cut

Figure 15 - Hole Cut

Figure 16 - First Layer of Fiberglass

Figure 17 - Pilot Hole

Figure 18 - Coils Align Properly

Figure 19 - First Layer Hardened
Figure 20 - Cutting The Hole .. 18
Figure 21 - Template Cut out .. 18
Figure 22 - Template Placement .. 18
Figure 23 - Coils Aligned on Template .. 18
Figure 24 - Coils Soldered Per phase .. 18
Figure 25 - Phase Access Bolts ... 18
Figure 26 - Final part of Stator Molded and Hardened 19
Figure 27 - MDF Adhered to first layer of Fiberglass 19
Figure 28 - Rotors ... 19
Figure 29 - Line to Line Voltage vs. Frequency Plot 21
Figure 30 - Line to Line Voltage vs. RPM Plot 21
Figure 31 - Phase Voltage vs. Frequency Plot 22
Figure 32 - Phase Voltage vs. RPM Plot .. 22
Figure 33 - Phase testing at 112RPM ... 23
Figure 34 - Phase testing at 145RPM ... 24
Figure 35 - Lighting 100W lightbulbs and a 25W bulb 24
Figure 36 - DC Voltage vs. Frequency ... 26
Figure 37 - DC Voltage vs. RPM .. 26
Figure 38 - DC waveform .. 27
Figure 39 - Gnatt Chart ... 32
Figure 40 - Risk Matrix .. 33
Figure 41 - Monitor damage due to Magnet Impact 34
List of Tables

Table 1 – Testing Magnets with U-Bracket .. 13

Table 2 – No load AC Testing and Calculations ... 20

Table 3 – No Load DC Measurements and Calculations 25

Table 4 – Project Requirement ... 28

Table 5 – Labor Costs .. 29

Table 6 – Total Item Costs .. 29

Table 7 – Risks ... 31

List of Equations

Equation 1- Faraday's Law .. 3

Equation 2 - RPM of a Running Generator .. 3

Equation 3 - Converting Inches to Meters .. 11

Equation 4- Surface Area of a Magnet ... 11

Equation 5 - Turns in a Series .. 11

Equation 6- Change in Time .. 11

Equation 7- Theoretically calculated Induced voltage 11