Title

Tuning the Selectivity of Gd3N Cluster Endohedral Metallofullerene Reactions with Lewis Acids

Document Type

Article

Publication Date

2014

Publication Source

Inorganic Chemistry

Volume

53

Issue

24

Inclusive pages

12939–12946

DOI

10.1021/ic502024a

Publisher

American Chemical Society

ISBN/ISSN

1520-510X

Peer Reviewed

yes

Abstract

We demonstrate the manipulation of the Lewis acid strength to selectively fractionate different types of Gd3N metallofullerenes that are present in complex mixtures. Carbon disulfide is used for all Lewis acid studies. CaCl2 exhibits the lowest reactivity but the highest selectivity by precipitating only those gadolinium metallofullerenes with the lowest first oxidation potentials. ZnCl2 selectively complexes Gd3N@C88 during the first 4 h of reaction. Reaction with ZnCl2 for an additional 7 days permits a selective precipitation of Gd3N@C84 as the dominant endohedral isolated. A third fraction is the filtrate, which possesses Gd3N@C86 and Gd3N@C80 as the two dominant metallofullerenes. The order of increasing reactivity and decreasing selectivity (left to right) is as follows: CaCl2 < ZnCl2 < NiCl2 < MgCl2 < MnCl2 < CuCl2 < WCl4 ≪ WCl6 < ZrCl4 < AlCl3 < FeCl3. As a group, CaCl2, ZnCl2, and NiCl2 are the weakest Lewis acids and have the highest selectivity because of their very low precipitation onsets, which are below +0.19 V (i.e., endohedrals with first oxidation potentials below +0.19 V are precipitated). For CaCl2, the precipitation threshold is estimated at a remarkably low value of +0.06 V. Because most endohedrals possess first oxidation potentials significantly higher than +0.06 V, CaCl2 is especially useful in its ability to precipitate only a select group of gadolinium metallofullerenes. The Lewis acids of intermediate reactivity (i.e., precipitation onsets estimated between +0.19 and +0.4 V) are MgCl2, MnCl2, CuCl2, and WCl4. The strongest Lewis acids (WCl6, ZrCl4, AlCl3, and FeCl3) are the least selective and tend to precipitate the entire family of gadolinium metallofullerenes. Tuning the Lewis acid for a specific type of endohedral should be useful in a nonchromatographic purification method. The ability to control which metallofullerenes are permitted to precipitate and which endohedrals would remain in solution is a key outcome of this work.

Keywords

chemistry, precipitation, Amination, Chemical Precipitation, Fullerenes, Gadolinium, Lewis Acids, Silicon Dioxide

Disciplines

Chemistry

This document is currently not available here.

  Contact Author

Share

COinS